This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the transposition at an ordered pair <. A , B >. . (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brtpos2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 tpos 𝐹 𝐵 ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reltpos | ⊢ Rel tpos 𝐹 | |
| 2 | 1 | brrelex1i | ⊢ ( 𝐴 tpos 𝐹 𝐵 → 𝐴 ∈ V ) |
| 3 | 2 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 tpos 𝐹 𝐵 → 𝐴 ∈ V ) ) |
| 4 | elex | ⊢ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) → 𝐴 ∈ V ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) → 𝐴 ∈ V ) |
| 6 | 5 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) → 𝐴 ∈ V ) ) |
| 7 | df-tpos | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 8 | 7 | breqi | ⊢ ( 𝐴 tpos 𝐹 𝐵 ↔ 𝐴 ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) 𝐵 ) |
| 9 | brcog | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) 𝐵 ↔ ∃ 𝑦 ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ∧ 𝑦 𝐹 𝐵 ) ) ) | |
| 10 | 8 9 | bitrid | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 tpos 𝐹 𝐵 ↔ ∃ 𝑦 ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ∧ 𝑦 𝐹 𝐵 ) ) ) |
| 11 | funmpt | ⊢ Fun ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) | |
| 12 | funbrfv2b | ⊢ ( Fun ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) → ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ↔ ( 𝐴 ∈ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ∧ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) = 𝑦 ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ↔ ( 𝐴 ∈ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ∧ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) = 𝑦 ) ) |
| 14 | snex | ⊢ { 𝑥 } ∈ V | |
| 15 | 14 | cnvex | ⊢ ◡ { 𝑥 } ∈ V |
| 16 | 15 | uniex | ⊢ ∪ ◡ { 𝑥 } ∈ V |
| 17 | eqid | ⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) | |
| 18 | 16 17 | dmmpti | ⊢ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) = ( ◡ dom 𝐹 ∪ { ∅ } ) |
| 19 | 18 | eleq2i | ⊢ ( 𝐴 ∈ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↔ 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) |
| 20 | eqcom | ⊢ ( ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) = 𝑦 ↔ 𝑦 = ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) ) | |
| 21 | 19 20 | anbi12i | ⊢ ( ( 𝐴 ∈ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ∧ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) = 𝑦 ) ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 = ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) ) ) |
| 22 | sneq | ⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) | |
| 23 | 22 | cnveqd | ⊢ ( 𝑥 = 𝐴 → ◡ { 𝑥 } = ◡ { 𝐴 } ) |
| 24 | 23 | unieqd | ⊢ ( 𝑥 = 𝐴 → ∪ ◡ { 𝑥 } = ∪ ◡ { 𝐴 } ) |
| 25 | snex | ⊢ { 𝐴 } ∈ V | |
| 26 | 25 | cnvex | ⊢ ◡ { 𝐴 } ∈ V |
| 27 | 26 | uniex | ⊢ ∪ ◡ { 𝐴 } ∈ V |
| 28 | 24 17 27 | fvmpt | ⊢ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) → ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) = ∪ ◡ { 𝐴 } ) |
| 29 | 28 | eqeq2d | ⊢ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) → ( 𝑦 = ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) ↔ 𝑦 = ∪ ◡ { 𝐴 } ) ) |
| 30 | 29 | pm5.32i | ⊢ ( ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 = ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) ) ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 = ∪ ◡ { 𝐴 } ) ) |
| 31 | 21 30 | bitri | ⊢ ( ( 𝐴 ∈ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ∧ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ‘ 𝐴 ) = 𝑦 ) ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 = ∪ ◡ { 𝐴 } ) ) |
| 32 | 13 31 | bitri | ⊢ ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 = ∪ ◡ { 𝐴 } ) ) |
| 33 | 32 | biancomi | ⊢ ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ↔ ( 𝑦 = ∪ ◡ { 𝐴 } ∧ 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ) |
| 34 | 33 | anbi1i | ⊢ ( ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ∧ 𝑦 𝐹 𝐵 ) ↔ ( ( 𝑦 = ∪ ◡ { 𝐴 } ∧ 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 𝐹 𝐵 ) ) |
| 35 | anass | ⊢ ( ( ( 𝑦 = ∪ ◡ { 𝐴 } ∧ 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 𝐹 𝐵 ) ↔ ( 𝑦 = ∪ ◡ { 𝐴 } ∧ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 𝐹 𝐵 ) ) ) | |
| 36 | 34 35 | bitri | ⊢ ( ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ∧ 𝑦 𝐹 𝐵 ) ↔ ( 𝑦 = ∪ ◡ { 𝐴 } ∧ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 𝐹 𝐵 ) ) ) |
| 37 | 36 | exbii | ⊢ ( ∃ 𝑦 ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ∧ 𝑦 𝐹 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 = ∪ ◡ { 𝐴 } ∧ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 𝐹 𝐵 ) ) ) |
| 38 | breq1 | ⊢ ( 𝑦 = ∪ ◡ { 𝐴 } → ( 𝑦 𝐹 𝐵 ↔ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) ) | |
| 39 | 38 | anbi2d | ⊢ ( 𝑦 = ∪ ◡ { 𝐴 } → ( ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 𝐹 𝐵 ) ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) ) ) |
| 40 | 27 39 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦 = ∪ ◡ { 𝐴 } ∧ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ 𝑦 𝐹 𝐵 ) ) ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) ) |
| 41 | 37 40 | bitri | ⊢ ( ∃ 𝑦 ( 𝐴 ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑦 ∧ 𝑦 𝐹 𝐵 ) ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) ) |
| 42 | 10 41 | bitrdi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 tpos 𝐹 𝐵 ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) ) ) |
| 43 | 42 | expcom | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ V → ( 𝐴 tpos 𝐹 𝐵 ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) ) ) ) |
| 44 | 3 6 43 | pm5.21ndd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 tpos 𝐹 𝐵 ↔ ( 𝐴 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝐴 } 𝐹 𝐵 ) ) ) |