This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | topclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| toplatlub.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| toplatglb0.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | ||
| Assertion | toplatglb0 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = ∪ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| 2 | toplatlub.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 3 | toplatglb0.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 5 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 | topopn | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ∪ 𝐽 ∈ 𝐽 ) |
| 8 | 1 4 7 | ipoglb0 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = ∪ 𝐽 ) |