This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpmulg.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| tgpmulg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| tgpmulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | tgpmulg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpmulg.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | tgpmulg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | tgpmulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | tgptmd | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) | |
| 5 | 1 2 3 | tmdmulg | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 8 | simpllr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ 𝐵 ) → 𝑁 ∈ ℤ ) | |
| 9 | 8 | zcnd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ 𝐵 ) → 𝑁 ∈ ℂ ) |
| 10 | 9 | negnegd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ 𝐵 ) → - - 𝑁 = 𝑁 ) |
| 11 | 10 | oveq1d | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ 𝐵 ) → ( - - 𝑁 · 𝑥 ) = ( 𝑁 · 𝑥 ) ) |
| 12 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 13 | 3 2 12 | mulgnegnn | ⊢ ( ( - 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐵 ) → ( - - 𝑁 · 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑥 ) ) ) |
| 14 | 13 | adantll | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ 𝐵 ) → ( - - 𝑁 · 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑥 ) ) ) |
| 15 | 11 14 | eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑁 · 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑥 ) ) ) |
| 16 | 15 | mpteq2dva | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑥 ) ) ) ) |
| 17 | 1 3 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 19 | 4 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) → 𝐺 ∈ TopMnd ) |
| 20 | nnnn0 | ⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℕ0 ) | |
| 21 | 1 2 3 | tmdmulg | ⊢ ( ( 𝐺 ∈ TopMnd ∧ - 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐵 ↦ ( - 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 22 | 19 20 21 | syl2an | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) → ( 𝑥 ∈ 𝐵 ↦ ( - 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 23 | 1 12 | tgpinv | ⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 25 | 18 22 24 | cnmpt11f | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) → ( 𝑥 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑥 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 26 | 16 25 | eqeltrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 27 | 26 | adantrl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 28 | simpr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 29 | elznn0nn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) | |
| 30 | 28 29 | sylib | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
| 31 | 7 27 30 | mpjaodan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑁 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |