This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Toset, "less than" is equivalent to the negation of the converse of "less than or equal to", see pltnle . (Contributed by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tleile.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| tleile.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| tltnle.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | tltnle | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tleile.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | tleile.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | tltnle.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | tospos | ⊢ ( 𝐾 ∈ Toset → 𝐾 ∈ Poset ) | |
| 5 | 1 2 3 | pltval3 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |
| 7 | 1 2 | tleile | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ) |
| 8 | ibar | ⊢ ( ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ ( ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) | |
| 9 | pm5.61 | ⊢ ( ( ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ∧ ¬ 𝑌 ≤ 𝑋 ) ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) | |
| 10 | 8 9 | bitr2di | ⊢ ( ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ↔ ¬ 𝑌 ≤ 𝑋 ) ) |
| 11 | 7 10 | syl | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ↔ ¬ 𝑌 ≤ 𝑋 ) ) |
| 12 | 6 11 | bitrd | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋 ) ) |