This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Toset, "less than" is equivalent to the negation of the converse of "less than or equal to", see pltnle . (Contributed by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tleile.b | |- B = ( Base ` K ) |
|
| tleile.l | |- .<_ = ( le ` K ) |
||
| tltnle.s | |- .< = ( lt ` K ) |
||
| Assertion | tltnle | |- ( ( K e. Toset /\ X e. B /\ Y e. B ) -> ( X .< Y <-> -. Y .<_ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tleile.b | |- B = ( Base ` K ) |
|
| 2 | tleile.l | |- .<_ = ( le ` K ) |
|
| 3 | tltnle.s | |- .< = ( lt ` K ) |
|
| 4 | tospos | |- ( K e. Toset -> K e. Poset ) |
|
| 5 | 1 2 3 | pltval3 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( X .<_ Y /\ -. Y .<_ X ) ) ) |
| 6 | 4 5 | syl3an1 | |- ( ( K e. Toset /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( X .<_ Y /\ -. Y .<_ X ) ) ) |
| 7 | 1 2 | tleile | |- ( ( K e. Toset /\ X e. B /\ Y e. B ) -> ( X .<_ Y \/ Y .<_ X ) ) |
| 8 | ibar | |- ( ( X .<_ Y \/ Y .<_ X ) -> ( -. Y .<_ X <-> ( ( X .<_ Y \/ Y .<_ X ) /\ -. Y .<_ X ) ) ) |
|
| 9 | pm5.61 | |- ( ( ( X .<_ Y \/ Y .<_ X ) /\ -. Y .<_ X ) <-> ( X .<_ Y /\ -. Y .<_ X ) ) |
|
| 10 | 8 9 | bitr2di | |- ( ( X .<_ Y \/ Y .<_ X ) -> ( ( X .<_ Y /\ -. Y .<_ X ) <-> -. Y .<_ X ) ) |
| 11 | 7 10 | syl | |- ( ( K e. Toset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ -. Y .<_ X ) <-> -. Y .<_ X ) ) |
| 12 | 6 11 | bitrd | |- ( ( K e. Toset /\ X e. B /\ Y e. B ) -> ( X .< Y <-> -. Y .<_ X ) ) |