This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pleval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pleval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| pleval2.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | pltnle | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 ≤ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pleval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | pleval2.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | 2 3 | pltval | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 5 | 1 2 | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| 6 | 5 | biimpd | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) → 𝑋 = 𝑌 ) ) |
| 7 | 6 | expdimp | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 ≤ 𝑋 → 𝑋 = 𝑌 ) ) |
| 8 | 7 | necon3ad | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ≠ 𝑌 → ¬ 𝑌 ≤ 𝑋 ) ) |
| 9 | 8 | expimpd | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) → ¬ 𝑌 ≤ 𝑋 ) ) |
| 10 | 4 9 | sylbid | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋 ) ) |
| 11 | 10 | imp | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 ≤ 𝑋 ) |