This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tleile.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| tleile.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | tleile | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tleile.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | tleile.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | simp2 | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 4 | simp3 | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 5 | 1 2 | istos | ⊢ ( 𝐾 ∈ Toset ↔ ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝐾 ∈ Toset → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 8 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦 ) ) | |
| 9 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋 ) ) | |
| 10 | 8 9 | orbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ↔ ( 𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋 ) ) ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 12 | breq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋 ) ) | |
| 13 | 11 12 | orbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋 ) ↔ ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ) ) |
| 14 | 10 13 | rspc2va | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) → ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ) |
| 15 | 3 4 7 14 | syl21anc | ⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋 ) ) |