This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, F : X --> Y is an isomorphism iff there is a morphism from Y to X . (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thinciso.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| thinciso.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| thinciso.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | thinciso | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | thinciso.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | thinciso.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | thinciso.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 8 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 9 | 1 | thinccd | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 | 2 5 6 8 9 3 4 7 | dfiso3 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ) |
| 11 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 12 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 13 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝐶 ∈ ThinCat ) |
| 14 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝑌 ∈ 𝐵 ) |
| 15 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝑋 ∈ 𝐵 ) |
| 16 | 13 2 14 15 8 5 | thincsect | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ) |
| 17 | 11 12 16 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) |
| 18 | 13 2 15 14 8 5 | thincsect | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
| 19 | 12 11 18 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) |
| 20 | 17 19 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ⊤ ) ) → ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) |
| 21 | trud | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ⊤ ) | |
| 22 | 21 | reximdva0 | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) → ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ⊤ ) |
| 23 | 20 22 | reximddv | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) → ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) |
| 24 | rexn0 | ⊢ ( ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) → ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝜑 ∧ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) → ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) |
| 26 | 23 25 | impbida | ⊢ ( 𝜑 → ( ( 𝑌 𝐻 𝑋 ) ≠ ∅ ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ) |
| 27 | 10 26 | bitr4d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |