This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thinciso.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | thinccic | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | thinciso.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 7 | 1 | thinccd | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 | 2 5 6 7 3 4 | isohom | ⊢ ( 𝜑 → ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
| 9 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ ThinCat ) |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 14 | 10 2 11 12 5 6 13 | thinciso | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |
| 15 | 9 14 | biadanid | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |
| 16 | 15 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |
| 17 | 6 2 7 3 4 | cic | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 18 | n0 | ⊢ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 19 | 18 | anbi1i | ⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |
| 20 | 19.41v | ⊢ ( ∃ 𝑓 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) | |
| 21 | 19 20 | bitr4i | ⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |
| 23 | 16 17 22 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ ( 𝑌 𝐻 𝑋 ) ≠ ∅ ) ) ) |