This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| thincsect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | thincsect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | thincsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | thincsect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 9 | 1 | thinccd | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 | 2 6 7 8 5 9 3 4 | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 11 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) | |
| 12 | 10 11 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 13 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) → 𝐶 ∈ ThinCat ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 15 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 18 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 19 | 2 6 7 15 14 16 14 17 18 | catcocl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 20 | 13 2 6 14 8 19 | thincid | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 21 | 12 20 | mpbiran3d | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |