This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, F : X --> Y is an isomorphism iff there is a morphism from Y to X . (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
| thincsect.b | |- B = ( Base ` C ) |
||
| thincsect.x | |- ( ph -> X e. B ) |
||
| thincsect.y | |- ( ph -> Y e. B ) |
||
| thinciso.h | |- H = ( Hom ` C ) |
||
| thinciso.i | |- I = ( Iso ` C ) |
||
| thinciso.f | |- ( ph -> F e. ( X H Y ) ) |
||
| Assertion | thinciso | |- ( ph -> ( F e. ( X I Y ) <-> ( Y H X ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincsect.b | |- B = ( Base ` C ) |
|
| 3 | thincsect.x | |- ( ph -> X e. B ) |
|
| 4 | thincsect.y | |- ( ph -> Y e. B ) |
|
| 5 | thinciso.h | |- H = ( Hom ` C ) |
|
| 6 | thinciso.i | |- I = ( Iso ` C ) |
|
| 7 | thinciso.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 8 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 9 | 1 | thinccd | |- ( ph -> C e. Cat ) |
| 10 | 2 5 6 8 9 3 4 7 | dfiso3 | |- ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( g ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) g ) ) ) |
| 11 | simprl | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> g e. ( Y H X ) ) |
|
| 12 | 7 | ad2antrr | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> F e. ( X H Y ) ) |
| 13 | 1 | ad2antrr | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> C e. ThinCat ) |
| 14 | 4 | ad2antrr | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> Y e. B ) |
| 15 | 3 | ad2antrr | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> X e. B ) |
| 16 | 13 2 14 15 8 5 | thincsect | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> ( g ( Y ( Sect ` C ) X ) F <-> ( g e. ( Y H X ) /\ F e. ( X H Y ) ) ) ) |
| 17 | 11 12 16 | mpbir2and | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> g ( Y ( Sect ` C ) X ) F ) |
| 18 | 13 2 15 14 8 5 | thincsect | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> ( F ( X ( Sect ` C ) Y ) g <-> ( F e. ( X H Y ) /\ g e. ( Y H X ) ) ) ) |
| 19 | 12 11 18 | mpbir2and | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> F ( X ( Sect ` C ) Y ) g ) |
| 20 | 17 19 | jca | |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> ( g ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) g ) ) |
| 21 | trud | |- ( ( ph /\ g e. ( Y H X ) ) -> T. ) |
|
| 22 | 21 | reximdva0 | |- ( ( ph /\ ( Y H X ) =/= (/) ) -> E. g e. ( Y H X ) T. ) |
| 23 | 20 22 | reximddv | |- ( ( ph /\ ( Y H X ) =/= (/) ) -> E. g e. ( Y H X ) ( g ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) g ) ) |
| 24 | rexn0 | |- ( E. g e. ( Y H X ) ( g ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) g ) -> ( Y H X ) =/= (/) ) |
|
| 25 | 24 | adantl | |- ( ( ph /\ E. g e. ( Y H X ) ( g ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) g ) ) -> ( Y H X ) =/= (/) ) |
| 26 | 23 25 | impbida | |- ( ph -> ( ( Y H X ) =/= (/) <-> E. g e. ( Y H X ) ( g ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) g ) ) ) |
| 27 | 10 26 | bitr4d | |- ( ph -> ( F e. ( X I Y ) <-> ( Y H X ) =/= (/) ) ) |