This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincfth.c | |- ( ph -> C e. ThinCat ) |
|
| thincfth.f | |- ( ph -> F ( C Func D ) G ) |
||
| Assertion | thincfth | |- ( ph -> F ( C Faith D ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincfth.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincfth.f | |- ( ph -> F ( C Func D ) G ) |
|
| 3 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) |
| 4 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 5 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 8 | 3 4 5 6 7 | thincmo | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( x ( Hom ` C ) y ) ) |
| 9 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 10 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F ( C Func D ) G ) |
| 11 | 6 7 9 10 4 5 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 12 | f1mo | |- ( ( E* f f e. ( x ( Hom ` C ) y ) /\ ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
|
| 13 | 8 11 12 | syl2anc | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 14 | 13 | ralrimivva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 15 | 6 7 9 | isfth2 | |- ( F ( C Faith D ) G <-> ( F ( C Func D ) G /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) -1-1-> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
| 16 | 2 14 15 | sylanbrc | |- ( ph -> F ( C Faith D ) G ) |