This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1mo | ⊢ ( ( ∃* 𝑥 𝑥 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo0sn | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) | |
| 2 | f102g | ⊢ ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | f1sn2g | ⊢ ( ( 𝑦 ∈ V ∧ 𝐹 : { 𝑦 } ⟶ 𝐵 ) → 𝐹 : { 𝑦 } –1-1→ 𝐵 ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐹 : { 𝑦 } ⟶ 𝐵 → 𝐹 : { 𝑦 } –1-1→ 𝐵 ) |
| 6 | feq2 | ⊢ ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : { 𝑦 } ⟶ 𝐵 ) ) | |
| 7 | f1eq2 | ⊢ ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : { 𝑦 } –1-1→ 𝐵 ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝐴 = { 𝑦 } → ( ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) ↔ ( 𝐹 : { 𝑦 } ⟶ 𝐵 → 𝐹 : { 𝑦 } –1-1→ 𝐵 ) ) ) |
| 9 | 5 8 | mpbiri | ⊢ ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑦 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 11 | 10 | imp | ⊢ ( ( ∃ 𝑦 𝐴 = { 𝑦 } ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 12 | 2 11 | jaoian | ⊢ ( ( ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 13 | 1 12 | sylanb | ⊢ ( ( ∃* 𝑥 𝑥 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |