This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | ||
| thincsect.b | |||
| thincsect.x | |||
| thincsect.y | |||
| thinciso.h | |||
| Assertion | thinccic |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | ||
| 2 | thincsect.b | ||
| 3 | thincsect.x | ||
| 4 | thincsect.y | ||
| 5 | thinciso.h | ||
| 6 | eqid | ||
| 7 | 1 | thinccd | |
| 8 | 2 5 6 7 3 4 | isohom | |
| 9 | 8 | sselda | |
| 10 | 1 | adantr | |
| 11 | 3 | adantr | |
| 12 | 4 | adantr | |
| 13 | simpr | ||
| 14 | 10 2 11 12 5 6 13 | thinciso | |
| 15 | 9 14 | biadanid | |
| 16 | 15 | exbidv | |
| 17 | 6 2 7 3 4 | cic | |
| 18 | n0 | ||
| 19 | 18 | anbi1i | |
| 20 | 19.41v | ||
| 21 | 19 20 | bitr4i | |
| 22 | 21 | a1i | |
| 23 | 16 17 22 | 3bitr4d |