This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
| thincsect.b | |- B = ( Base ` C ) |
||
| thincsect.x | |- ( ph -> X e. B ) |
||
| thincsect.y | |- ( ph -> Y e. B ) |
||
| thinciso.h | |- H = ( Hom ` C ) |
||
| Assertion | thinccic | |- ( ph -> ( X ( ~=c ` C ) Y <-> ( ( X H Y ) =/= (/) /\ ( Y H X ) =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincsect.b | |- B = ( Base ` C ) |
|
| 3 | thincsect.x | |- ( ph -> X e. B ) |
|
| 4 | thincsect.y | |- ( ph -> Y e. B ) |
|
| 5 | thinciso.h | |- H = ( Hom ` C ) |
|
| 6 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 7 | 1 | thinccd | |- ( ph -> C e. Cat ) |
| 8 | 2 5 6 7 3 4 | isohom | |- ( ph -> ( X ( Iso ` C ) Y ) C_ ( X H Y ) ) |
| 9 | 8 | sselda | |- ( ( ph /\ f e. ( X ( Iso ` C ) Y ) ) -> f e. ( X H Y ) ) |
| 10 | 1 | adantr | |- ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) |
| 11 | 3 | adantr | |- ( ( ph /\ f e. ( X H Y ) ) -> X e. B ) |
| 12 | 4 | adantr | |- ( ( ph /\ f e. ( X H Y ) ) -> Y e. B ) |
| 13 | simpr | |- ( ( ph /\ f e. ( X H Y ) ) -> f e. ( X H Y ) ) |
|
| 14 | 10 2 11 12 5 6 13 | thinciso | |- ( ( ph /\ f e. ( X H Y ) ) -> ( f e. ( X ( Iso ` C ) Y ) <-> ( Y H X ) =/= (/) ) ) |
| 15 | 9 14 | biadanid | |- ( ph -> ( f e. ( X ( Iso ` C ) Y ) <-> ( f e. ( X H Y ) /\ ( Y H X ) =/= (/) ) ) ) |
| 16 | 15 | exbidv | |- ( ph -> ( E. f f e. ( X ( Iso ` C ) Y ) <-> E. f ( f e. ( X H Y ) /\ ( Y H X ) =/= (/) ) ) ) |
| 17 | 6 2 7 3 4 | cic | |- ( ph -> ( X ( ~=c ` C ) Y <-> E. f f e. ( X ( Iso ` C ) Y ) ) ) |
| 18 | n0 | |- ( ( X H Y ) =/= (/) <-> E. f f e. ( X H Y ) ) |
|
| 19 | 18 | anbi1i | |- ( ( ( X H Y ) =/= (/) /\ ( Y H X ) =/= (/) ) <-> ( E. f f e. ( X H Y ) /\ ( Y H X ) =/= (/) ) ) |
| 20 | 19.41v | |- ( E. f ( f e. ( X H Y ) /\ ( Y H X ) =/= (/) ) <-> ( E. f f e. ( X H Y ) /\ ( Y H X ) =/= (/) ) ) |
|
| 21 | 19 20 | bitr4i | |- ( ( ( X H Y ) =/= (/) /\ ( Y H X ) =/= (/) ) <-> E. f ( f e. ( X H Y ) /\ ( Y H X ) =/= (/) ) ) |
| 22 | 21 | a1i | |- ( ph -> ( ( ( X H Y ) =/= (/) /\ ( Y H X ) =/= (/) ) <-> E. f ( f e. ( X H Y ) /\ ( Y H X ) =/= (/) ) ) ) |
| 23 | 16 17 22 | 3bitr4d | |- ( ph -> ( X ( ~=c ` C ) Y <-> ( ( X H Y ) =/= (/) /\ ( Y H X ) =/= (/) ) ) ) |