This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a topology generated by a basis in Munkres p. 78. Later we show (in tgcl ) that ( topGenB ) is indeed a topology (on U. B , see unitg ). See also tgval and tgval3 . (Contributed by NM, 15-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgval2 | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) | |
| 2 | inss1 | ⊢ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵 | |
| 3 | 2 | unissi | ⊢ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ∪ 𝐵 |
| 4 | 3 | sseli | ⊢ ( 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑦 ∈ ∪ 𝐵 ) |
| 5 | 4 | pm4.71ri | ⊢ ( 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑦 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 7 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 9 | dfss3 | ⊢ ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) | |
| 10 | dfss3 | ⊢ ( 𝑥 ⊆ ∪ 𝐵 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ) | |
| 11 | elin | ⊢ ( 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) | |
| 12 | 11 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑧 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) |
| 13 | an12 | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) | |
| 14 | 12 13 | bitri | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) |
| 16 | eluni | ⊢ ( 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) | |
| 17 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) ) | |
| 18 | 15 16 17 | 3bitr4i | ⊢ ( 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ) |
| 19 | velpw | ⊢ ( 𝑧 ∈ 𝒫 𝑥 ↔ 𝑧 ⊆ 𝑥 ) | |
| 20 | 19 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 21 | 20 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝒫 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 22 | 18 21 | bitr2i | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ↔ 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 23 | 22 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 24 | 10 23 | anbi12i | ⊢ ( ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 25 | 8 9 24 | 3bitr4i | ⊢ ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) |
| 26 | 25 | abbii | ⊢ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) } |
| 27 | 1 26 | eqtrdi | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) } ) |