This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a basis. See also tgval2 and tgval3 . (Contributed by NM, 16-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgval | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topgen | ⊢ topGen = ( 𝑦 ∈ V ↦ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑥 ) } ) | |
| 2 | ineq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑥 ) ) | |
| 3 | 2 | unieqd | ⊢ ( 𝑦 = 𝐵 → ∪ ( 𝑦 ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 4 | 3 | sseq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑥 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 5 | 4 | abbidv | ⊢ ( 𝑦 = 𝐵 → { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑥 ) } = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) |
| 6 | elex | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ V ) | |
| 7 | uniexg | ⊢ ( 𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V ) | |
| 8 | abssexg | ⊢ ( ∪ 𝐵 ∈ V → { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥 ) } ∈ V ) | |
| 9 | uniin | ⊢ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ( ∪ 𝐵 ∩ ∪ 𝒫 𝑥 ) | |
| 10 | sstr | ⊢ ( ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ∧ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ( ∪ 𝐵 ∩ ∪ 𝒫 𝑥 ) ) → 𝑥 ⊆ ( ∪ 𝐵 ∩ ∪ 𝒫 𝑥 ) ) | |
| 11 | 9 10 | mpan2 | ⊢ ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ( ∪ 𝐵 ∩ ∪ 𝒫 𝑥 ) ) |
| 12 | ssin | ⊢ ( ( 𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥 ) ↔ 𝑥 ⊆ ( ∪ 𝐵 ∩ ∪ 𝒫 𝑥 ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → ( 𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥 ) ) |
| 14 | 13 | ss2abi | ⊢ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥 ) } |
| 15 | ssexg | ⊢ ( ( { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥 ) } ∧ { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥 ) } ∈ V ) → { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ∈ V ) | |
| 16 | 14 15 | mpan | ⊢ ( { 𝑥 ∣ ( 𝑥 ⊆ ∪ 𝐵 ∧ 𝑥 ⊆ ∪ 𝒫 𝑥 ) } ∈ V → { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ∈ V ) |
| 17 | 7 8 16 | 3syl | ⊢ ( 𝐵 ∈ 𝑉 → { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ∈ V ) |
| 18 | 1 5 6 17 | fvmptd3 | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) |