This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tgpt1.j | |- J = ( TopOpen ` G ) |
|
| Assertion | tgpt1 | |- ( G e. TopGrp -> ( J e. Haus <-> J e. Fre ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpt1.j | |- J = ( TopOpen ` G ) |
|
| 2 | haust1 | |- ( J e. Haus -> J e. Fre ) |
|
| 3 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 4 5 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 7 | 3 6 | syl | |- ( G e. TopGrp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 8 | 1 4 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 9 | toponuni | |- ( J e. ( TopOn ` ( Base ` G ) ) -> ( Base ` G ) = U. J ) |
|
| 10 | 8 9 | syl | |- ( G e. TopGrp -> ( Base ` G ) = U. J ) |
| 11 | 7 10 | eleqtrd | |- ( G e. TopGrp -> ( 0g ` G ) e. U. J ) |
| 12 | eqid | |- U. J = U. J |
|
| 13 | 12 | t1sncld | |- ( ( J e. Fre /\ ( 0g ` G ) e. U. J ) -> { ( 0g ` G ) } e. ( Clsd ` J ) ) |
| 14 | 13 | expcom | |- ( ( 0g ` G ) e. U. J -> ( J e. Fre -> { ( 0g ` G ) } e. ( Clsd ` J ) ) ) |
| 15 | 11 14 | syl | |- ( G e. TopGrp -> ( J e. Fre -> { ( 0g ` G ) } e. ( Clsd ` J ) ) ) |
| 16 | 5 1 | tgphaus | |- ( G e. TopGrp -> ( J e. Haus <-> { ( 0g ` G ) } e. ( Clsd ` J ) ) ) |
| 17 | 15 16 | sylibrd | |- ( G e. TopGrp -> ( J e. Fre -> J e. Haus ) ) |
| 18 | 2 17 | impbid2 | |- ( G e. TopGrp -> ( J e. Haus <-> J e. Fre ) ) |