This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left group action of element A in a topological group G is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgplacthmeo.1 | |- F = ( x e. X |-> ( A .+ x ) ) |
|
| tgplacthmeo.2 | |- X = ( Base ` G ) |
||
| tgplacthmeo.3 | |- .+ = ( +g ` G ) |
||
| tgplacthmeo.4 | |- J = ( TopOpen ` G ) |
||
| Assertion | tgplacthmeo | |- ( ( G e. TopGrp /\ A e. X ) -> F e. ( J Homeo J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgplacthmeo.1 | |- F = ( x e. X |-> ( A .+ x ) ) |
|
| 2 | tgplacthmeo.2 | |- X = ( Base ` G ) |
|
| 3 | tgplacthmeo.3 | |- .+ = ( +g ` G ) |
|
| 4 | tgplacthmeo.4 | |- J = ( TopOpen ` G ) |
|
| 5 | tgptmd | |- ( G e. TopGrp -> G e. TopMnd ) |
|
| 6 | 1 2 3 4 | tmdlactcn | |- ( ( G e. TopMnd /\ A e. X ) -> F e. ( J Cn J ) ) |
| 7 | 5 6 | sylan | |- ( ( G e. TopGrp /\ A e. X ) -> F e. ( J Cn J ) ) |
| 8 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 9 | eqid | |- ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) = ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) |
|
| 10 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 11 | 9 2 3 10 | grplactcnv | |- ( ( G e. Grp /\ A e. X ) -> ( ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) : X -1-1-onto-> X /\ `' ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) ) ) |
| 12 | 8 11 | sylan | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) : X -1-1-onto-> X /\ `' ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) ) ) |
| 13 | 12 | simprd | |- ( ( G e. TopGrp /\ A e. X ) -> `' ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) ) |
| 14 | 9 2 | grplactfval | |- ( A e. X -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( x e. X |-> ( A .+ x ) ) ) |
| 15 | 14 | adantl | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( x e. X |-> ( A .+ x ) ) ) |
| 16 | 15 1 | eqtr4di | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = F ) |
| 17 | 16 | cnveqd | |- ( ( G e. TopGrp /\ A e. X ) -> `' ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = `' F ) |
| 18 | 2 10 | grpinvcl | |- ( ( G e. Grp /\ A e. X ) -> ( ( invg ` G ) ` A ) e. X ) |
| 19 | 8 18 | sylan | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( invg ` G ) ` A ) e. X ) |
| 20 | 9 2 | grplactfval | |- ( ( ( invg ` G ) ` A ) e. X -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) = ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) ) |
| 21 | 19 20 | syl | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) = ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) ) |
| 22 | 13 17 21 | 3eqtr3d | |- ( ( G e. TopGrp /\ A e. X ) -> `' F = ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) ) |
| 23 | eqid | |- ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) = ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) |
|
| 24 | 23 2 3 4 | tmdlactcn | |- ( ( G e. TopMnd /\ ( ( invg ` G ) ` A ) e. X ) -> ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) e. ( J Cn J ) ) |
| 25 | 5 19 24 | syl2an2r | |- ( ( G e. TopGrp /\ A e. X ) -> ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) e. ( J Cn J ) ) |
| 26 | 22 25 | eqeltrd | |- ( ( G e. TopGrp /\ A e. X ) -> `' F e. ( J Cn J ) ) |
| 27 | ishmeo | |- ( F e. ( J Homeo J ) <-> ( F e. ( J Cn J ) /\ `' F e. ( J Cn J ) ) ) |
|
| 28 | 7 26 27 | sylanbrc | |- ( ( G e. TopGrp /\ A e. X ) -> F e. ( J Homeo J ) ) |