This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for termopropd . (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| initopropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| initopropdlem.1 | |- ( ph -> -. C e. _V ) |
||
| Assertion | termopropdlem | |- ( ph -> ( TermO ` C ) = ( TermO ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | initopropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | initopropdlem.1 | |- ( ph -> -. C e. _V ) |
|
| 4 | termofn | |- TermO Fn Cat |
|
| 5 | ssv | |- Cat C_ _V |
|
| 6 | simpr | |- ( ( ph /\ D e. Cat ) -> D e. Cat ) |
|
| 7 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | 6 7 8 | termoval | |- ( ( ph /\ D e. Cat ) -> ( TermO ` D ) = { a e. ( Base ` D ) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } ) |
| 10 | fvprc | |- ( -. C e. _V -> ( Homf ` C ) = (/) ) |
|
| 11 | 3 10 | syl | |- ( ph -> ( Homf ` C ) = (/) ) |
| 12 | 1 11 | eqtr3d | |- ( ph -> ( Homf ` D ) = (/) ) |
| 13 | homf0 | |- ( ( Base ` D ) = (/) <-> ( Homf ` D ) = (/) ) |
|
| 14 | 12 13 | sylibr | |- ( ph -> ( Base ` D ) = (/) ) |
| 15 | 14 | rabeqdv | |- ( ph -> { a e. ( Base ` D ) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } = { a e. (/) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } ) |
| 16 | rab0 | |- { a e. (/) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( ph -> { a e. ( Base ` D ) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } = (/) ) |
| 18 | 17 | adantr | |- ( ( ph /\ D e. Cat ) -> { a e. ( Base ` D ) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } = (/) ) |
| 19 | 9 18 | eqtrd | |- ( ( ph /\ D e. Cat ) -> ( TermO ` D ) = (/) ) |
| 20 | 4 3 5 19 | initopropdlemlem | |- ( ph -> ( TermO ` C ) = ( TermO ` D ) ) |