This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for initopropdlem , termopropdlem , and zeroopropdlem . (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropdlemlem.1 | ⊢ 𝐹 Fn 𝑋 | |
| initopropdlemlem.2 | ⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝑌 ) | ||
| initopropdlemlem.3 | ⊢ 𝑋 ⊆ 𝑌 | ||
| initopropdlemlem.4 | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = ∅ ) | ||
| Assertion | initopropdlemlem | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropdlemlem.1 | ⊢ 𝐹 Fn 𝑋 | |
| 2 | initopropdlemlem.2 | ⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝑌 ) | |
| 3 | initopropdlemlem.3 | ⊢ 𝑋 ⊆ 𝑌 | |
| 4 | initopropdlemlem.4 | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = ∅ ) | |
| 5 | 3 | sseli | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑌 ) |
| 6 | 2 5 | nsyl | ⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝑋 ) |
| 7 | 1 | fndmi | ⊢ dom 𝐹 = 𝑋 |
| 8 | 7 | eleq2i | ⊢ ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ 𝑋 ) |
| 9 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 10 | 8 9 | sylnbir | ⊢ ( ¬ 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 13 | 12 4 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 14 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 15 | 7 | eleq2i | ⊢ ( 𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝑋 ) |
| 16 | ndmfv | ⊢ ( ¬ 𝐵 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐵 ) = ∅ ) | |
| 17 | 15 16 | sylnbir | ⊢ ( ¬ 𝐵 ∈ 𝑋 → ( 𝐹 ‘ 𝐵 ) = ∅ ) |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = ∅ ) |
| 19 | 14 18 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 20 | 13 19 | pm2.61dan | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |