This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological space is T_0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kqhmph | ⊢ ( 𝐽 ∈ Kol2 ↔ 𝐽 ≃ ( KQ ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t0top | ⊢ ( 𝐽 ∈ Kol2 → 𝐽 ∈ Top ) | |
| 2 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐽 ∈ Kol2 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 5 | 4 | t0kq | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝐽 ∈ Kol2 ↔ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝐽 ∈ Kol2 → ( 𝐽 ∈ Kol2 ↔ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝐽 ∈ Kol2 → ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) |
| 8 | hmphi | ⊢ ( ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) → 𝐽 ≃ ( KQ ‘ 𝐽 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐽 ∈ Kol2 → 𝐽 ≃ ( KQ ‘ 𝐽 ) ) |
| 10 | hmphsym | ⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( KQ ‘ 𝐽 ) ≃ 𝐽 ) | |
| 11 | hmphtop1 | ⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 12 | kqt0 | ⊢ ( 𝐽 ∈ Top ↔ ( KQ ‘ 𝐽 ) ∈ Kol2 ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( KQ ‘ 𝐽 ) ∈ Kol2 ) |
| 14 | t0hmph | ⊢ ( ( KQ ‘ 𝐽 ) ≃ 𝐽 → ( ( KQ ‘ 𝐽 ) ∈ Kol2 → 𝐽 ∈ Kol2 ) ) | |
| 15 | 10 13 14 | sylc | ⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → 𝐽 ∈ Kol2 ) |
| 16 | 9 15 | impbii | ⊢ ( 𝐽 ∈ Kol2 ↔ 𝐽 ≃ ( KQ ‘ 𝐽 ) ) |