This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological indistinguishability map is injective iff the space is T_0. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | ist0-4 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ 𝐹 : 𝑋 –1-1→ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqfeq | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 3 | 2 | 3expb | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 4 | 3 | imbi1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) → 𝑧 = 𝑤 ) ) ) |
| 5 | 4 | 2ralbidva | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) → 𝑧 = 𝑤 ) ) ) |
| 6 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 7 | dffn2 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 ⟶ V ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 : 𝑋 ⟶ V ) |
| 9 | dff13 | ⊢ ( 𝐹 : 𝑋 –1-1→ V ↔ ( 𝐹 : 𝑋 ⟶ V ∧ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) | |
| 10 | 9 | baib | ⊢ ( 𝐹 : 𝑋 ⟶ V → ( 𝐹 : 𝑋 –1-1→ V ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 : 𝑋 –1-1→ V ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 12 | ist0-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) → 𝑧 = 𝑤 ) ) ) | |
| 13 | 5 11 12 | 3bitr4rd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ 𝐹 : 𝑋 –1-1→ V ) ) |