This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqval | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 3 | id | ⊢ ( 𝑗 = 𝐽 → 𝑗 = 𝐽 ) | |
| 4 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 5 | rabeq | ⊢ ( 𝑗 = 𝐽 → { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 6 | 4 5 | mpteq12dv | ⊢ ( 𝑗 = 𝐽 → ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) |
| 7 | 3 6 | oveq12d | ⊢ ( 𝑗 = 𝐽 → ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) = ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 8 | df-kq | ⊢ KQ = ( 𝑗 ∈ Top ↦ ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) ) | |
| 9 | ovex | ⊢ ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝐽 ∈ Top → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 11 | 2 10 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 12 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 13 | 12 | mpteq1d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) |
| 14 | 1 13 | eqtrid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) |
| 15 | 14 | oveq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 16 | 11 15 | eqtr4d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |