This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological space is T_0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t0kq.1 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | t0kq | |- ( J e. ( TopOn ` X ) -> ( J e. Kol2 <-> F e. ( J Homeo ( KQ ` J ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t0kq.1 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | simpl | |- ( ( J e. ( TopOn ` X ) /\ J e. Kol2 ) -> J e. ( TopOn ` X ) ) |
|
| 3 | 1 | ist0-4 | |- ( J e. ( TopOn ` X ) -> ( J e. Kol2 <-> F : X -1-1-> _V ) ) |
| 4 | 3 | biimpa | |- ( ( J e. ( TopOn ` X ) /\ J e. Kol2 ) -> F : X -1-1-> _V ) |
| 5 | 2 4 | qtopf1 | |- ( ( J e. ( TopOn ` X ) /\ J e. Kol2 ) -> F e. ( J Homeo ( J qTop F ) ) ) |
| 6 | 1 | kqval | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) |
| 7 | 6 | adantr | |- ( ( J e. ( TopOn ` X ) /\ J e. Kol2 ) -> ( KQ ` J ) = ( J qTop F ) ) |
| 8 | 7 | oveq2d | |- ( ( J e. ( TopOn ` X ) /\ J e. Kol2 ) -> ( J Homeo ( KQ ` J ) ) = ( J Homeo ( J qTop F ) ) ) |
| 9 | 5 8 | eleqtrrd | |- ( ( J e. ( TopOn ` X ) /\ J e. Kol2 ) -> F e. ( J Homeo ( KQ ` J ) ) ) |
| 10 | hmphi | |- ( F e. ( J Homeo ( KQ ` J ) ) -> J ~= ( KQ ` J ) ) |
|
| 11 | hmphsym | |- ( J ~= ( KQ ` J ) -> ( KQ ` J ) ~= J ) |
|
| 12 | 10 11 | syl | |- ( F e. ( J Homeo ( KQ ` J ) ) -> ( KQ ` J ) ~= J ) |
| 13 | 1 | kqt0lem | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. Kol2 ) |
| 14 | t0hmph | |- ( ( KQ ` J ) ~= J -> ( ( KQ ` J ) e. Kol2 -> J e. Kol2 ) ) |
|
| 15 | 12 13 14 | syl2im | |- ( F e. ( J Homeo ( KQ ` J ) ) -> ( J e. ( TopOn ` X ) -> J e. Kol2 ) ) |
| 16 | 15 | impcom | |- ( ( J e. ( TopOn ` X ) /\ F e. ( J Homeo ( KQ ` J ) ) ) -> J e. Kol2 ) |
| 17 | 9 16 | impbida | |- ( J e. ( TopOn ` X ) -> ( J e. Kol2 <-> F e. ( J Homeo ( KQ ` J ) ) ) ) |