This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgga.g | ⊢ 𝐺 = ( SymGrp ‘ 𝑋 ) | |
| symgga.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| symgga.f | ⊢ 𝐹 = ( 𝑓 ∈ 𝐵 , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) | ||
| Assertion | symgga | ⊢ ( 𝑋 ∈ 𝑉 → 𝐹 ∈ ( 𝐺 GrpAct 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgga.g | ⊢ 𝐺 = ( SymGrp ‘ 𝑋 ) | |
| 2 | symgga.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | symgga.f | ⊢ 𝐹 = ( 𝑓 ∈ 𝐵 , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) | |
| 4 | 1 | symggrp | ⊢ ( 𝑋 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 5 | 2 | idghm | ⊢ ( 𝐺 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 6 | fvresi | ⊢ ( 𝑓 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑓 ) = 𝑓 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑥 ∈ 𝑋 ) → ( ( I ↾ 𝐵 ) ‘ 𝑓 ) = 𝑓 ) |
| 8 | 7 | fveq1d | ⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑓 ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 9 | 8 | mpoeq3ia | ⊢ ( 𝑓 ∈ 𝐵 , 𝑥 ∈ 𝑋 ↦ ( ( ( I ↾ 𝐵 ) ‘ 𝑓 ) ‘ 𝑥 ) ) = ( 𝑓 ∈ 𝐵 , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) |
| 10 | 3 9 | eqtr4i | ⊢ 𝐹 = ( 𝑓 ∈ 𝐵 , 𝑥 ∈ 𝑋 ↦ ( ( ( I ↾ 𝐵 ) ‘ 𝑓 ) ‘ 𝑥 ) ) |
| 11 | 2 1 10 | lactghmga | ⊢ ( ( I ↾ 𝐵 ) ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐹 ∈ ( 𝐺 GrpAct 𝑋 ) ) |
| 12 | 4 5 11 | 3syl | ⊢ ( 𝑋 ∈ 𝑉 → 𝐹 ∈ ( 𝐺 GrpAct 𝑋 ) ) |