This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pgrpsubgsymgbi.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| pgrpsubgsymgbi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | pgrpsubgsymgbi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑃 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | pgrpsubgsymgbi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 2 | issubg | ⊢ ( 𝑃 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) |
| 4 | 3anass | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) | |
| 5 | 3 4 | bitri | ⊢ ( 𝑃 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |
| 6 | 1 | symggrp | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 7 | ibar | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) ) | |
| 8 | 7 | bicomd | ⊢ ( 𝐺 ∈ Grp → ( ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ↔ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ↔ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |
| 10 | 5 9 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑃 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |