This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgga.g | |- G = ( SymGrp ` X ) |
|
| symgga.b | |- B = ( Base ` G ) |
||
| symgga.f | |- F = ( f e. B , x e. X |-> ( f ` x ) ) |
||
| Assertion | symgga | |- ( X e. V -> F e. ( G GrpAct X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgga.g | |- G = ( SymGrp ` X ) |
|
| 2 | symgga.b | |- B = ( Base ` G ) |
|
| 3 | symgga.f | |- F = ( f e. B , x e. X |-> ( f ` x ) ) |
|
| 4 | 1 | symggrp | |- ( X e. V -> G e. Grp ) |
| 5 | 2 | idghm | |- ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) |
| 6 | fvresi | |- ( f e. B -> ( ( _I |` B ) ` f ) = f ) |
|
| 7 | 6 | adantr | |- ( ( f e. B /\ x e. X ) -> ( ( _I |` B ) ` f ) = f ) |
| 8 | 7 | fveq1d | |- ( ( f e. B /\ x e. X ) -> ( ( ( _I |` B ) ` f ) ` x ) = ( f ` x ) ) |
| 9 | 8 | mpoeq3ia | |- ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) = ( f e. B , x e. X |-> ( f ` x ) ) |
| 10 | 3 9 | eqtr4i | |- F = ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) |
| 11 | 2 1 10 | lactghmga | |- ( ( _I |` B ) e. ( G GrpHom G ) -> F e. ( G GrpAct X ) ) |
| 12 | 4 5 11 | 3syl | |- ( X e. V -> F e. ( G GrpAct X ) ) |