This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of galactghm . The uncurrying of a homomorphism into ( SymGrpY ) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lactghmga.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| lactghmga.h | ⊢ 𝐻 = ( SymGrp ‘ 𝑌 ) | ||
| lactghmga.f | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ) | ||
| Assertion | lactghmga | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lactghmga.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | lactghmga.h | ⊢ 𝐻 = ( SymGrp ‘ 𝑌 ) | |
| 3 | lactghmga.f | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ) | |
| 4 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) | |
| 5 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) | |
| 6 | grpn0 | ⊢ ( 𝐻 ∈ Grp → 𝐻 ≠ ∅ ) | |
| 7 | fvprc | ⊢ ( ¬ 𝑌 ∈ V → ( SymGrp ‘ 𝑌 ) = ∅ ) | |
| 8 | 2 7 | eqtrid | ⊢ ( ¬ 𝑌 ∈ V → 𝐻 = ∅ ) |
| 9 | 8 | necon1ai | ⊢ ( 𝐻 ≠ ∅ → 𝑌 ∈ V ) |
| 10 | 5 6 9 | 3syl | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝑌 ∈ V ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 12 | 1 11 | ghmf | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
| 13 | 12 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ) |
| 14 | 10 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ∈ V ) |
| 15 | 2 11 | elsymgbas | ⊢ ( 𝑌 ∈ V → ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑥 ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑥 ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 17 | 13 16 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) : 𝑌 –1-1-onto→ 𝑌 ) |
| 18 | f1of | ⊢ ( ( 𝐹 ‘ 𝑥 ) : 𝑌 –1-1-onto→ 𝑌 → ( 𝐹 ‘ 𝑥 ) : 𝑌 ⟶ 𝑌 ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) : 𝑌 ⟶ 𝑌 ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ∈ 𝑌 ) |
| 21 | 20 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ∈ 𝑌 ) |
| 22 | 21 | ralrimiva | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ∈ 𝑌 ) |
| 23 | 3 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) ∈ 𝑌 ↔ ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 24 | 22 23 | sylib | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 25 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 26 | 1 25 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 27 | 4 26 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 28 | fveq2 | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) | |
| 29 | 28 | fveq1d | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑦 ) ) |
| 30 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) ) | |
| 31 | fvex | ⊢ ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) ∈ V | |
| 32 | 29 30 3 31 | ovmpo | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) ) |
| 33 | 27 32 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) ) |
| 34 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 35 | 25 34 | ghmid | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 37 | 10 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → 𝑌 ∈ V ) |
| 38 | 2 | symgid | ⊢ ( 𝑌 ∈ V → ( I ↾ 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
| 39 | 37 38 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( I ↾ 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
| 40 | 36 39 | eqtr4d | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( I ↾ 𝑌 ) ) |
| 41 | 40 | fveq1d | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ‘ 𝑧 ) = ( ( I ↾ 𝑌 ) ‘ 𝑧 ) ) |
| 42 | fvresi | ⊢ ( 𝑧 ∈ 𝑌 → ( ( I ↾ 𝑌 ) ‘ 𝑧 ) = 𝑧 ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( I ↾ 𝑌 ) ‘ 𝑧 ) = 𝑧 ) |
| 44 | 33 41 43 | 3eqtrd | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ) |
| 45 | 12 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
| 46 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑣 ∈ 𝑋 ) | |
| 47 | 45 46 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝐻 ) ) |
| 48 | 10 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑌 ∈ V ) |
| 49 | 2 11 | elsymgbas | ⊢ ( 𝑌 ∈ V → ( ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑣 ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 50 | 48 49 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑣 ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 51 | 47 50 | mpbid | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑣 ) : 𝑌 –1-1-onto→ 𝑌 ) |
| 52 | f1of | ⊢ ( ( 𝐹 ‘ 𝑣 ) : 𝑌 –1-1-onto→ 𝑌 → ( 𝐹 ‘ 𝑣 ) : 𝑌 ⟶ 𝑌 ) | |
| 53 | 51 52 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑣 ) : 𝑌 ⟶ 𝑌 ) |
| 54 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑌 ) | |
| 55 | fvco3 | ⊢ ( ( ( 𝐹 ‘ 𝑣 ) : 𝑌 ⟶ 𝑌 ∧ 𝑧 ∈ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) | |
| 56 | 53 54 55 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 57 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 58 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝑢 ∈ 𝑋 ) | |
| 59 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 60 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 61 | 1 59 60 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 62 | 57 58 46 61 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑣 ) ) ) |
| 63 | 45 58 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝐻 ) ) |
| 64 | 2 11 60 | symgov | ⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ ( Base ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 65 | 63 47 64 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 66 | 62 65 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ) |
| 67 | 66 | fveq1d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) = ( ( ( 𝐹 ‘ 𝑢 ) ∘ ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑧 ) ) |
| 68 | 53 54 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ∈ 𝑌 ) |
| 69 | fveq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑢 ) ) | |
| 70 | 69 | fveq1d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑢 ) ‘ 𝑦 ) ) |
| 71 | fveq2 | ⊢ ( 𝑦 = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑢 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) | |
| 72 | fvex | ⊢ ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ∈ V | |
| 73 | 70 71 3 72 | ovmpo | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ∈ 𝑌 ) → ( 𝑢 ⊕ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 74 | 58 68 73 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ⊕ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑢 ) ‘ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 75 | 56 67 74 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) = ( 𝑢 ⊕ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 76 | 4 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 77 | 1 59 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ) |
| 78 | 76 58 46 77 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ) |
| 79 | fveq2 | ⊢ ( 𝑥 = ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ) | |
| 80 | 79 | fveq1d | ⊢ ( 𝑥 = ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑦 ) ) |
| 81 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) ) | |
| 82 | fvex | ⊢ ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) ∈ V | |
| 83 | 80 81 3 82 | ovmpo | ⊢ ( ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) ) |
| 84 | 78 54 83 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( ( 𝐹 ‘ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ) ‘ 𝑧 ) ) |
| 85 | fveq2 | ⊢ ( 𝑥 = 𝑣 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) | |
| 86 | 85 | fveq1d | ⊢ ( 𝑥 = 𝑣 → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑦 ) ) |
| 87 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) | |
| 88 | fvex | ⊢ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ∈ V | |
| 89 | 86 87 3 88 | ovmpo | ⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( 𝑣 ⊕ 𝑧 ) = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) |
| 90 | 46 54 89 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑣 ⊕ 𝑧 ) = ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) |
| 91 | 90 | oveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) = ( 𝑢 ⊕ ( ( 𝐹 ‘ 𝑣 ) ‘ 𝑧 ) ) ) |
| 92 | 75 84 91 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 93 | 92 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) |
| 94 | 44 93 | jca | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) |
| 95 | 94 | ralrimiva | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ∀ 𝑧 ∈ 𝑌 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) |
| 96 | 24 95 | jca | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝑌 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) ) |
| 97 | 1 59 25 | isga | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) ∧ ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝑌 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑧 ) = 𝑧 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ⊕ 𝑧 ) = ( 𝑢 ⊕ ( 𝑣 ⊕ 𝑧 ) ) ) ) ) ) |
| 98 | 4 10 96 97 | syl21anbrc | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |