This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgga.g | ||
| symgga.b | |||
| symgga.f | |||
| Assertion | symgga |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgga.g | ||
| 2 | symgga.b | ||
| 3 | symgga.f | ||
| 4 | 1 | symggrp | |
| 5 | 2 | idghm | |
| 6 | fvresi | ||
| 7 | 6 | adantr | |
| 8 | 7 | fveq1d | |
| 9 | 8 | mpoeq3ia | |
| 10 | 3 9 | eqtr4i | |
| 11 | 2 1 10 | lactghmga | |
| 12 | 4 5 11 | 3syl |