This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrun | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → sup ( ( 𝐴 ∪ 𝐵 ) , ℝ* , < ) = sup ( 𝐵 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ℝ* ) | |
| 2 | 1 | biimpi | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ* ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ* ) |
| 4 | supxrcl | ⊢ ( 𝐵 ⊆ ℝ* → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) | |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
| 6 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 7 | xrltso | ⊢ < Or ℝ* | |
| 8 | 7 | a1i | ⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
| 9 | xrsupss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑦 ∈ ℝ* ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑧 < 𝑤 ) ) ) | |
| 10 | 8 9 | supub | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝑥 ∈ 𝐴 → ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ 𝐴 → ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
| 12 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 14 | 4 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
| 15 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) | |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 17 | xrlelttr | ⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ∧ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) | |
| 18 | 13 14 16 17 | syl3anc | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ∧ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
| 19 | 18 | expdimp | ⊢ ( ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( sup ( 𝐵 , ℝ* , < ) < 𝑥 → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
| 20 | 19 | con3d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
| 21 | 20 | exp41 | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐵 ⊆ ℝ* → ( 𝑥 ∈ 𝐴 → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) ) ) ) |
| 22 | 21 | com34 | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐵 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) → ( 𝑥 ∈ 𝐴 → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) ) ) ) |
| 23 | 22 | 3imp | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ 𝐴 → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) ) |
| 24 | 11 23 | mpdd | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ 𝐴 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
| 25 | 7 | a1i | ⊢ ( 𝐵 ⊆ ℝ* → < Or ℝ* ) |
| 26 | xrsupss | ⊢ ( 𝐵 ⊆ ℝ* → ∃ 𝑦 ∈ ℝ* ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑤 ∈ 𝐵 𝑧 < 𝑤 ) ) ) | |
| 27 | 25 26 | supub | ⊢ ( 𝐵 ⊆ ℝ* → ( 𝑥 ∈ 𝐵 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
| 28 | 27 | 3ad2ant2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ 𝐵 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
| 29 | 24 28 | jaod | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
| 30 | 6 29 | biimtrid | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
| 31 | 30 | ralrimiv | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) |
| 32 | rexr | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) | |
| 33 | xrsupss | ⊢ ( 𝐵 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑥 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑥 → ∃ 𝑦 ∈ 𝐵 𝑧 < 𝑦 ) ) ) | |
| 34 | 25 33 | suplub | ⊢ ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ* ∧ 𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ) |
| 35 | 32 34 | sylani | ⊢ ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ) |
| 36 | elun2 | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) | |
| 37 | 36 | anim1i | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 < 𝑦 ) → ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑥 < 𝑦 ) ) |
| 38 | 37 | reximi2 | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) |
| 39 | 35 38 | syl6 | ⊢ ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) |
| 40 | 39 | expd | ⊢ ( 𝐵 ⊆ ℝ* → ( 𝑥 ∈ ℝ → ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) ) |
| 41 | 40 | ralrimiv | ⊢ ( 𝐵 ⊆ ℝ* → ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) |
| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) |
| 43 | supxr | ⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) ) → sup ( ( 𝐴 ∪ 𝐵 ) , ℝ* , < ) = sup ( 𝐵 , ℝ* , < ) ) | |
| 44 | 3 5 31 42 43 | syl22anc | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → sup ( ( 𝐴 ∪ 𝐵 ) , ℝ* , < ) = sup ( 𝐵 , ℝ* , < ) ) |