This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrmnf | ⊢ ( 𝐴 ⊆ ℝ* → sup ( ( 𝐴 ∪ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | ⊢ ( 𝐴 ∪ { -∞ } ) = ( { -∞ } ∪ 𝐴 ) | |
| 2 | 1 | supeq1i | ⊢ sup ( ( 𝐴 ∪ { -∞ } ) , ℝ* , < ) = sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < ) |
| 3 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 4 | snssi | ⊢ ( -∞ ∈ ℝ* → { -∞ } ⊆ ℝ* ) | |
| 5 | 3 4 | mp1i | ⊢ ( 𝐴 ⊆ ℝ* → { -∞ } ⊆ ℝ* ) |
| 6 | id | ⊢ ( 𝐴 ⊆ ℝ* → 𝐴 ⊆ ℝ* ) | |
| 7 | xrltso | ⊢ < Or ℝ* | |
| 8 | supsn | ⊢ ( ( < Or ℝ* ∧ -∞ ∈ ℝ* ) → sup ( { -∞ } , ℝ* , < ) = -∞ ) | |
| 9 | 7 3 8 | mp2an | ⊢ sup ( { -∞ } , ℝ* , < ) = -∞ |
| 10 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 11 | mnfle | ⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → -∞ ≤ sup ( 𝐴 , ℝ* , < ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ⊆ ℝ* → -∞ ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 13 | 9 12 | eqbrtrid | ⊢ ( 𝐴 ⊆ ℝ* → sup ( { -∞ } , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 14 | supxrun | ⊢ ( ( { -∞ } ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ∧ sup ( { -∞ } , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) → sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) | |
| 15 | 5 6 13 14 | syl3anc | ⊢ ( 𝐴 ⊆ ℝ* → sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |
| 16 | 2 15 | eqtrid | ⊢ ( 𝐴 ⊆ ℝ* → sup ( ( 𝐴 ∪ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |