This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suprnmpt.a | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| suprnmpt.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| suprnmpt.bnd | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) | ||
| suprnmpt.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | ||
| suprnmpt.c | ⊢ 𝐶 = sup ( ran 𝐹 , ℝ , < ) | ||
| Assertion | suprnmpt | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprnmpt.a | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 2 | suprnmpt.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | suprnmpt.bnd | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) | |
| 4 | suprnmpt.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | suprnmpt.c | ⊢ 𝐶 = sup ( ran 𝐹 , ℝ , < ) | |
| 6 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 7 | 4 | rnmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → ran 𝐹 ⊆ ℝ ) |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 9 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 10 | 9 2 4 1 | rnmptn0 | ⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
| 11 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 12 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 | |
| 13 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → 𝑦 ∈ ℝ ) | |
| 14 | simpl1 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑧 ∈ ran 𝐹 ) → 𝜑 ) | |
| 15 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑧 ∈ ran 𝐹 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) | |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | 4 | elrnmpt | ⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 18 | 16 17 | ax-mp | ⊢ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 19 | 18 | biimpi | ⊢ ( 𝑧 ∈ ran 𝐹 → ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 20 | 19 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑧 ∈ ran 𝐹 ) → ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 21 | simp3 | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) | |
| 22 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
| 23 | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 | |
| 24 | 9 22 23 | nf3an | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 25 | nfv | ⊢ Ⅎ 𝑥 𝑧 ≤ 𝑦 | |
| 26 | simp3 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐵 ) | |
| 27 | rspa | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝑦 ) | |
| 28 | 27 | 3adant3 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝐵 ≤ 𝑦 ) |
| 29 | 26 28 | eqbrtrd | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝑧 ≤ 𝑦 ) |
| 30 | 29 | 3exp | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝑦 ) ) ) |
| 31 | 30 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝑦 ) ) ) |
| 32 | 24 25 31 | rexlimd | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝑦 ) ) |
| 33 | 21 32 | mpd | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → 𝑧 ≤ 𝑦 ) |
| 34 | 14 15 20 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑧 ∈ ran 𝐹 ) → 𝑧 ≤ 𝑦 ) |
| 35 | 34 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) |
| 36 | 19.8a | ⊢ ( ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) → ∃ 𝑦 ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) ) | |
| 37 | 13 35 36 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∃ 𝑦 ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) ) |
| 38 | df-rex | ⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) ) | |
| 39 | 37 38 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) |
| 40 | 39 | 3exp | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) ) ) |
| 41 | 11 12 40 | rexlimd | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) ) |
| 42 | 3 41 | mpd | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) |
| 43 | suprcl | ⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) | |
| 44 | 8 10 42 43 | syl3anc | ⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 45 | 5 44 | eqeltrid | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 46 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran 𝐹 ⊆ ℝ ) |
| 47 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 48 | 4 | elrnmpt1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ran 𝐹 ) |
| 49 | 47 2 48 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran 𝐹 ) |
| 50 | 49 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran 𝐹 ≠ ∅ ) |
| 51 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) |
| 52 | suprub | ⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 ) ∧ 𝐵 ∈ ran 𝐹 ) → 𝐵 ≤ sup ( ran 𝐹 , ℝ , < ) ) | |
| 53 | 46 50 51 49 52 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 54 | 53 5 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
| 55 | 54 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
| 56 | 45 55 | jca | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |