This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnmpt0f.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rnmpt0f.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| rnmpt0f.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | ||
| rnmptn0.a | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| Assertion | rnmptn0 | ⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt0f.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rnmpt0f.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | rnmpt0f.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 4 | rnmptn0.a | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 5 | 4 | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = ∅ ) |
| 6 | 1 2 3 | rnmpt0f | ⊢ ( 𝜑 → ( ran 𝐹 = ∅ ↔ 𝐴 = ∅ ) ) |
| 7 | 5 6 | mtbird | ⊢ ( 𝜑 → ¬ ran 𝐹 = ∅ ) |
| 8 | 7 | neqned | ⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |