This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supexpr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∃ 𝑥 ∈ P ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplem1pr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∪ 𝐴 ∈ P ) | |
| 2 | ltrelpr | ⊢ <P ⊆ ( P × P ) | |
| 3 | 2 | brel | ⊢ ( 𝑦 <P 𝑥 → ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) ) |
| 4 | 3 | simpld | ⊢ ( 𝑦 <P 𝑥 → 𝑦 ∈ P ) |
| 5 | 4 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ P ) |
| 6 | dfss3 | ⊢ ( 𝐴 ⊆ P ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ P ) | |
| 7 | 5 6 | sylibr | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → 𝐴 ⊆ P ) |
| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → 𝐴 ⊆ P ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → 𝐴 ⊆ P ) |
| 10 | suplem2pr | ⊢ ( 𝐴 ⊆ P → ( ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) ∧ ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) | |
| 11 | 10 | simpld | ⊢ ( 𝐴 ⊆ P → ( 𝑦 ∈ 𝐴 → ¬ ∪ 𝐴 <P 𝑦 ) ) |
| 12 | 11 | ralrimiv | ⊢ ( 𝐴 ⊆ P → ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ) |
| 13 | 10 | simprd | ⊢ ( 𝐴 ⊆ P → ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) |
| 14 | 13 | ralrimivw | ⊢ ( 𝐴 ⊆ P → ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) |
| 15 | 12 14 | jca | ⊢ ( 𝐴 ⊆ P → ( ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| 16 | 9 15 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| 17 | breq1 | ⊢ ( 𝑥 = ∪ 𝐴 → ( 𝑥 <P 𝑦 ↔ ∪ 𝐴 <P 𝑦 ) ) | |
| 18 | 17 | notbid | ⊢ ( 𝑥 = ∪ 𝐴 → ( ¬ 𝑥 <P 𝑦 ↔ ¬ ∪ 𝐴 <P 𝑦 ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑥 = ∪ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ) ) |
| 20 | breq2 | ⊢ ( 𝑥 = ∪ 𝐴 → ( 𝑦 <P 𝑥 ↔ 𝑦 <P ∪ 𝐴 ) ) | |
| 21 | 20 | imbi1d | ⊢ ( 𝑥 = ∪ 𝐴 → ( ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ↔ ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| 22 | 21 | ralbidv | ⊢ ( 𝑥 = ∪ 𝐴 → ( ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ↔ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| 23 | 19 22 | anbi12d | ⊢ ( 𝑥 = ∪ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) ) |
| 24 | 23 | rspcev | ⊢ ( ( ∪ 𝐴 ∈ P ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ ∪ 𝐴 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) → ∃ 𝑥 ∈ P ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |
| 25 | 1 16 24 | syl2anc | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∃ 𝑥 ∈ P ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦 ∈ P ( 𝑦 <P 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <P 𝑧 ) ) ) |