This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suplem2pr | |- ( A C_ P. -> ( ( y e. A -> -. U. A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr | |- |
|
| 2 | 1 | brel | |- ( y |
| 3 | 2 | simpld | |- ( y |
| 4 | ralnex | |- ( A. z e. A -. y |
|
| 5 | ssel2 | |- ( ( A C_ P. /\ z e. A ) -> z e. P. ) |
|
| 6 | ltsopr | |- |
|
| 7 | sotric | |- ( ( |
|
| 8 | 6 7 | mpan | |- ( ( y e. P. /\ z e. P. ) -> ( y |
| 9 | 8 | con2bid | |- ( ( y e. P. /\ z e. P. ) -> ( ( y = z \/ z |
| 10 | 9 | ancoms | |- ( ( z e. P. /\ y e. P. ) -> ( ( y = z \/ z |
| 11 | ltprord | |- ( ( z e. P. /\ y e. P. ) -> ( z |
|
| 12 | 11 | orbi2d | |- ( ( z e. P. /\ y e. P. ) -> ( ( y = z \/ z |
| 13 | sspss | |- ( z C_ y <-> ( z C. y \/ z = y ) ) |
|
| 14 | equcom | |- ( z = y <-> y = z ) |
|
| 15 | 14 | orbi2i | |- ( ( z C. y \/ z = y ) <-> ( z C. y \/ y = z ) ) |
| 16 | orcom | |- ( ( z C. y \/ y = z ) <-> ( y = z \/ z C. y ) ) |
|
| 17 | 13 15 16 | 3bitri | |- ( z C_ y <-> ( y = z \/ z C. y ) ) |
| 18 | 12 17 | bitr4di | |- ( ( z e. P. /\ y e. P. ) -> ( ( y = z \/ z |
| 19 | 10 18 | bitr3d | |- ( ( z e. P. /\ y e. P. ) -> ( -. y |
| 20 | 5 19 | sylan | |- ( ( ( A C_ P. /\ z e. A ) /\ y e. P. ) -> ( -. y |
| 21 | 20 | an32s | |- ( ( ( A C_ P. /\ y e. P. ) /\ z e. A ) -> ( -. y |
| 22 | 21 | ralbidva | |- ( ( A C_ P. /\ y e. P. ) -> ( A. z e. A -. y |
| 23 | 4 22 | bitr3id | |- ( ( A C_ P. /\ y e. P. ) -> ( -. E. z e. A y |
| 24 | unissb | |- ( U. A C_ y <-> A. z e. A z C_ y ) |
|
| 25 | 23 24 | bitr4di | |- ( ( A C_ P. /\ y e. P. ) -> ( -. E. z e. A y |
| 26 | ssnpss | |- ( U. A C_ y -> -. y C. U. A ) |
|
| 27 | ltprord | |- ( ( y e. P. /\ U. A e. P. ) -> ( y |
|
| 28 | 27 | biimpd | |- ( ( y e. P. /\ U. A e. P. ) -> ( y |
| 29 | 2 28 | mpcom | |- ( y |
| 30 | 26 29 | nsyl | |- ( U. A C_ y -> -. y |
| 31 | 25 30 | biimtrdi | |- ( ( A C_ P. /\ y e. P. ) -> ( -. E. z e. A y |
| 32 | 31 | con4d | |- ( ( A C_ P. /\ y e. P. ) -> ( y |
| 33 | 32 | ex | |- ( A C_ P. -> ( y e. P. -> ( y |
| 34 | 3 33 | syl5 | |- ( A C_ P. -> ( y |
| 35 | 34 | pm2.43d | |- ( A C_ P. -> ( y |
| 36 | elssuni | |- ( y e. A -> y C_ U. A ) |
|
| 37 | ssnpss | |- ( y C_ U. A -> -. U. A C. y ) |
|
| 38 | 36 37 | syl | |- ( y e. A -> -. U. A C. y ) |
| 39 | 1 | brel | |- ( U. A |
| 40 | ltprord | |- ( ( U. A e. P. /\ y e. P. ) -> ( U. A |
|
| 41 | 40 | biimpd | |- ( ( U. A e. P. /\ y e. P. ) -> ( U. A |
| 42 | 39 41 | mpcom | |- ( U. A |
| 43 | 38 42 | nsyl | |- ( y e. A -> -. U. A |
| 44 | 35 43 | jctil | |- ( A C_ P. -> ( ( y e. A -> -. U. A |