This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013) (Revised by Mario Carneiro, 15-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ser0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | ser0 | ⊢ ( 𝑁 ∈ 𝑍 → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ser0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 3 | 2 | a1i | ⊢ ( 𝑁 ∈ 𝑍 → ( 0 + 0 ) = 0 ) |
| 4 | 1 | eleq2i | ⊢ ( 𝑁 ∈ 𝑍 ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | 4 | biimpi | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 | 0cn | ⊢ 0 ∈ ℂ | |
| 7 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 7 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ 𝑍 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 10 | fvconst2g | ⊢ ( ( 0 ∈ ℂ ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) = 0 ) | |
| 11 | 6 9 10 | sylancr | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑍 × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 12 | 3 5 11 | seqid3 | ⊢ ( 𝑁 ∈ 𝑍 → ( seq 𝑀 ( + , ( 𝑍 × { 0 } ) ) ‘ 𝑁 ) = 0 ) |