This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | summodnegmod | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A + B ) mod N ) = 0 <-> ( A mod N ) = ( -u B mod N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> N e. NN ) |
|
| 2 | simp1 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> A e. ZZ ) |
|
| 3 | znegcl | |- ( B e. ZZ -> -u B e. ZZ ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> -u B e. ZZ ) |
| 5 | moddvds | |- ( ( N e. NN /\ A e. ZZ /\ -u B e. ZZ ) -> ( ( A mod N ) = ( -u B mod N ) <-> N || ( A - -u B ) ) ) |
|
| 6 | 1 2 4 5 | syl3anc | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A mod N ) = ( -u B mod N ) <-> N || ( A - -u B ) ) ) |
| 7 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 8 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 9 | 7 8 | anim12i | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 10 | 9 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A e. CC /\ B e. CC ) ) |
| 11 | subneg | |- ( ( A e. CC /\ B e. CC ) -> ( A - -u B ) = ( A + B ) ) |
|
| 12 | 11 | eqcomd | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( A - -u B ) ) |
| 13 | 10 12 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A + B ) = ( A - -u B ) ) |
| 14 | 13 | breq2d | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( N || ( A + B ) <-> N || ( A - -u B ) ) ) |
| 15 | zaddcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
|
| 16 | 15 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A + B ) e. ZZ ) |
| 17 | dvdsval3 | |- ( ( N e. NN /\ ( A + B ) e. ZZ ) -> ( N || ( A + B ) <-> ( ( A + B ) mod N ) = 0 ) ) |
|
| 18 | 1 16 17 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( N || ( A + B ) <-> ( ( A + B ) mod N ) = 0 ) ) |
| 19 | 6 14 18 | 3bitr2rd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A + B ) mod N ) = 0 <-> ( A mod N ) = ( -u B mod N ) ) ) |