This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for sum, with the class expressions B and C guarded by _I to be always sets. (Contributed by Mario Carneiro, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumeq2ii | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℤ ) | |
| 2 | simpr | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ 𝐴 ) | |
| 3 | simplll | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑘 I | |
| 5 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 | |
| 6 | 4 5 | nffv | ⊢ Ⅎ 𝑘 ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐶 | |
| 8 | 4 7 | nffv | ⊢ Ⅎ 𝑘 ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) |
| 9 | 6 8 | nfeq | ⊢ Ⅎ 𝑘 ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) = ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) |
| 10 | csbeq1a | ⊢ ( 𝑘 = 𝑛 → 𝐵 = ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( I ‘ 𝐵 ) = ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) ) |
| 12 | csbeq1a | ⊢ ( 𝑘 = 𝑛 → 𝐶 = ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( I ‘ 𝐶 ) = ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑘 = 𝑛 → ( ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ↔ ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) = ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) ) ) |
| 15 | 9 14 | rspc | ⊢ ( 𝑛 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) = ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) ) ) |
| 16 | 2 3 15 | sylc | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) ∧ 𝑛 ∈ 𝐴 ) → ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) = ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) ) |
| 17 | 16 | ifeq1da | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → if ( 𝑛 ∈ 𝐴 , ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) , ( I ‘ 0 ) ) = if ( 𝑛 ∈ 𝐴 , ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) , ( I ‘ 0 ) ) ) |
| 18 | fvif | ⊢ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) = if ( 𝑛 ∈ 𝐴 , ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) , ( I ‘ 0 ) ) | |
| 19 | fvif | ⊢ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) = if ( 𝑛 ∈ 𝐴 , ( I ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐶 ) , ( I ‘ 0 ) ) | |
| 20 | 17 18 19 | 3eqtr4g | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) = ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) |
| 21 | 20 | mpteq2dv | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) = ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ) |
| 22 | 21 | fveq1d | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ‘ 𝑥 ) = ( ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ‘ 𝑥 ) ) |
| 23 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) | |
| 24 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) = ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) | |
| 25 | 23 24 | fvmptex | ⊢ ( ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ‘ 𝑥 ) = ( ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ‘ 𝑥 ) |
| 26 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) = ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) | |
| 27 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) = ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) | |
| 28 | 26 27 | fvmptex | ⊢ ( ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ‘ 𝑥 ) = ( ( 𝑛 ∈ ℤ ↦ ( I ‘ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ‘ 𝑥 ) |
| 29 | 22 25 28 | 3eqtr4g | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ‘ 𝑥 ) = ( ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ‘ 𝑥 ) ) |
| 30 | 1 29 | seqfeq | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) = seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ) |
| 31 | 30 | breq1d | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ) |
| 32 | 31 | anbi2d | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ) ) |
| 33 | 32 | rexbidva | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ) ) |
| 34 | simplr | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝑚 ∈ ℕ ) | |
| 35 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 36 | 34 35 | eleqtrdi | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
| 37 | f1of | ⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... 𝑚 ) ⟶ 𝐴 ) | |
| 38 | 37 | ad2antlr | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → 𝑓 : ( 1 ... 𝑚 ) ⟶ 𝐴 ) |
| 39 | ffvelcdm | ⊢ ( ( 𝑓 : ( 1 ... 𝑚 ) ⟶ 𝐴 ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) | |
| 40 | 38 39 | sylancom | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) |
| 41 | simplll | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) | |
| 42 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) | |
| 43 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) | |
| 44 | 42 43 | nfeq | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) |
| 45 | csbeq1a | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) ) | |
| 46 | csbeq1a | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( I ‘ 𝐶 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) ) | |
| 47 | 45 46 | eqeq12d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ↔ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) ) ) |
| 48 | 44 47 | rspc | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) ) ) |
| 49 | 40 41 48 | sylc | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) ) |
| 50 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 51 | csbfv2g | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ V → ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) ) | |
| 52 | 50 51 | ax-mp | ⊢ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐵 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 53 | csbfv2g | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ V → ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) ) | |
| 54 | 50 53 | ax-mp | ⊢ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ ( I ‘ 𝐶 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) |
| 55 | 49 52 54 | 3eqtr3g | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) ) |
| 56 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... 𝑚 ) → 𝑥 ∈ ℕ ) | |
| 57 | 56 | adantl | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → 𝑥 ∈ ℕ ) |
| 58 | fveq2 | ⊢ ( 𝑛 = 𝑥 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 59 | 58 | csbeq1d | ⊢ ( 𝑛 = 𝑥 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) |
| 60 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) | |
| 61 | 59 60 | fvmpti | ⊢ ( 𝑥 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ‘ 𝑥 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) ) |
| 62 | 57 61 | syl | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ‘ 𝑥 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐵 ) ) |
| 63 | 58 | csbeq1d | ⊢ ( 𝑛 = 𝑥 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) |
| 64 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) | |
| 65 | 63 64 | fvmpti | ⊢ ( 𝑥 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ‘ 𝑥 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) ) |
| 66 | 57 65 | syl | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ‘ 𝑥 ) = ( I ‘ ⦋ ( 𝑓 ‘ 𝑥 ) / 𝑘 ⦌ 𝐶 ) ) |
| 67 | 55 62 66 | 3eqtr4d | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ‘ 𝑥 ) ) |
| 68 | 36 67 | seqfveq | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) |
| 69 | 68 | eqeq2d | ⊢ ( ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) |
| 70 | 69 | pm5.32da | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 71 | 70 | exbidv | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 72 | 71 | rexbidva | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
| 73 | 33 72 | orbi12d | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) ) |
| 74 | 73 | iotabidv | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) ) |
| 75 | df-sum | ⊢ Σ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | |
| 76 | df-sum | ⊢ Σ 𝑘 ∈ 𝐴 𝐶 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐶 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | |
| 77 | 74 75 76 | 3eqtr4g | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 𝐶 ) |