This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for sum, with the class expressions B and C guarded by _I to be always sets. (Contributed by Mario Carneiro, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumeq2ii | |- ( A. k e. A ( _I ` B ) = ( _I ` C ) -> sum_ k e. A B = sum_ k e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) -> m e. ZZ ) |
|
| 2 | simpr | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) /\ x e. ( ZZ>= ` m ) ) /\ n e. A ) -> n e. A ) |
|
| 3 | simplll | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) /\ x e. ( ZZ>= ` m ) ) /\ n e. A ) -> A. k e. A ( _I ` B ) = ( _I ` C ) ) |
|
| 4 | nfcv | |- F/_ k _I |
|
| 5 | nfcsb1v | |- F/_ k [_ n / k ]_ B |
|
| 6 | 4 5 | nffv | |- F/_ k ( _I ` [_ n / k ]_ B ) |
| 7 | nfcsb1v | |- F/_ k [_ n / k ]_ C |
|
| 8 | 4 7 | nffv | |- F/_ k ( _I ` [_ n / k ]_ C ) |
| 9 | 6 8 | nfeq | |- F/ k ( _I ` [_ n / k ]_ B ) = ( _I ` [_ n / k ]_ C ) |
| 10 | csbeq1a | |- ( k = n -> B = [_ n / k ]_ B ) |
|
| 11 | 10 | fveq2d | |- ( k = n -> ( _I ` B ) = ( _I ` [_ n / k ]_ B ) ) |
| 12 | csbeq1a | |- ( k = n -> C = [_ n / k ]_ C ) |
|
| 13 | 12 | fveq2d | |- ( k = n -> ( _I ` C ) = ( _I ` [_ n / k ]_ C ) ) |
| 14 | 11 13 | eqeq12d | |- ( k = n -> ( ( _I ` B ) = ( _I ` C ) <-> ( _I ` [_ n / k ]_ B ) = ( _I ` [_ n / k ]_ C ) ) ) |
| 15 | 9 14 | rspc | |- ( n e. A -> ( A. k e. A ( _I ` B ) = ( _I ` C ) -> ( _I ` [_ n / k ]_ B ) = ( _I ` [_ n / k ]_ C ) ) ) |
| 16 | 2 3 15 | sylc | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) /\ x e. ( ZZ>= ` m ) ) /\ n e. A ) -> ( _I ` [_ n / k ]_ B ) = ( _I ` [_ n / k ]_ C ) ) |
| 17 | 16 | ifeq1da | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) /\ x e. ( ZZ>= ` m ) ) -> if ( n e. A , ( _I ` [_ n / k ]_ B ) , ( _I ` 0 ) ) = if ( n e. A , ( _I ` [_ n / k ]_ C ) , ( _I ` 0 ) ) ) |
| 18 | fvif | |- ( _I ` if ( n e. A , [_ n / k ]_ B , 0 ) ) = if ( n e. A , ( _I ` [_ n / k ]_ B ) , ( _I ` 0 ) ) |
|
| 19 | fvif | |- ( _I ` if ( n e. A , [_ n / k ]_ C , 0 ) ) = if ( n e. A , ( _I ` [_ n / k ]_ C ) , ( _I ` 0 ) ) |
|
| 20 | 17 18 19 | 3eqtr4g | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) /\ x e. ( ZZ>= ` m ) ) -> ( _I ` if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( _I ` if ( n e. A , [_ n / k ]_ C , 0 ) ) ) |
| 21 | 20 | mpteq2dv | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) /\ x e. ( ZZ>= ` m ) ) -> ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ) |
| 22 | 21 | fveq1d | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) /\ x e. ( ZZ>= ` m ) ) -> ( ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ` x ) = ( ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ` x ) ) |
| 23 | eqid | |- ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) |
|
| 24 | eqid | |- ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ B , 0 ) ) ) |
|
| 25 | 23 24 | fvmptex | |- ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` x ) = ( ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ` x ) |
| 26 | eqid | |- ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) |
|
| 27 | eqid | |- ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ C , 0 ) ) ) = ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ C , 0 ) ) ) |
|
| 28 | 26 27 | fvmptex | |- ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ` x ) = ( ( n e. ZZ |-> ( _I ` if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ` x ) |
| 29 | 22 25 28 | 3eqtr4g | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) /\ x e. ( ZZ>= ` m ) ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` x ) = ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ` x ) ) |
| 30 | 1 29 | seqfeq | |- ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) -> seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ) |
| 31 | 30 | breq1d | |- ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) |
| 32 | 31 | anbi2d | |- ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. ZZ ) -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) ) |
| 33 | 32 | rexbidva | |- ( A. k e. A ( _I ` B ) = ( _I ` C ) -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) ) |
| 34 | simplr | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> m e. NN ) |
|
| 35 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 36 | 34 35 | eleqtrdi | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> m e. ( ZZ>= ` 1 ) ) |
| 37 | f1of | |- ( f : ( 1 ... m ) -1-1-onto-> A -> f : ( 1 ... m ) --> A ) |
|
| 38 | 37 | ad2antlr | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> f : ( 1 ... m ) --> A ) |
| 39 | ffvelcdm | |- ( ( f : ( 1 ... m ) --> A /\ x e. ( 1 ... m ) ) -> ( f ` x ) e. A ) |
|
| 40 | 38 39 | sylancom | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> ( f ` x ) e. A ) |
| 41 | simplll | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> A. k e. A ( _I ` B ) = ( _I ` C ) ) |
|
| 42 | nfcsb1v | |- F/_ k [_ ( f ` x ) / k ]_ ( _I ` B ) |
|
| 43 | nfcsb1v | |- F/_ k [_ ( f ` x ) / k ]_ ( _I ` C ) |
|
| 44 | 42 43 | nfeq | |- F/ k [_ ( f ` x ) / k ]_ ( _I ` B ) = [_ ( f ` x ) / k ]_ ( _I ` C ) |
| 45 | csbeq1a | |- ( k = ( f ` x ) -> ( _I ` B ) = [_ ( f ` x ) / k ]_ ( _I ` B ) ) |
|
| 46 | csbeq1a | |- ( k = ( f ` x ) -> ( _I ` C ) = [_ ( f ` x ) / k ]_ ( _I ` C ) ) |
|
| 47 | 45 46 | eqeq12d | |- ( k = ( f ` x ) -> ( ( _I ` B ) = ( _I ` C ) <-> [_ ( f ` x ) / k ]_ ( _I ` B ) = [_ ( f ` x ) / k ]_ ( _I ` C ) ) ) |
| 48 | 44 47 | rspc | |- ( ( f ` x ) e. A -> ( A. k e. A ( _I ` B ) = ( _I ` C ) -> [_ ( f ` x ) / k ]_ ( _I ` B ) = [_ ( f ` x ) / k ]_ ( _I ` C ) ) ) |
| 49 | 40 41 48 | sylc | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> [_ ( f ` x ) / k ]_ ( _I ` B ) = [_ ( f ` x ) / k ]_ ( _I ` C ) ) |
| 50 | fvex | |- ( f ` x ) e. _V |
|
| 51 | csbfv2g | |- ( ( f ` x ) e. _V -> [_ ( f ` x ) / k ]_ ( _I ` B ) = ( _I ` [_ ( f ` x ) / k ]_ B ) ) |
|
| 52 | 50 51 | ax-mp | |- [_ ( f ` x ) / k ]_ ( _I ` B ) = ( _I ` [_ ( f ` x ) / k ]_ B ) |
| 53 | csbfv2g | |- ( ( f ` x ) e. _V -> [_ ( f ` x ) / k ]_ ( _I ` C ) = ( _I ` [_ ( f ` x ) / k ]_ C ) ) |
|
| 54 | 50 53 | ax-mp | |- [_ ( f ` x ) / k ]_ ( _I ` C ) = ( _I ` [_ ( f ` x ) / k ]_ C ) |
| 55 | 49 52 54 | 3eqtr3g | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> ( _I ` [_ ( f ` x ) / k ]_ B ) = ( _I ` [_ ( f ` x ) / k ]_ C ) ) |
| 56 | elfznn | |- ( x e. ( 1 ... m ) -> x e. NN ) |
|
| 57 | 56 | adantl | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> x e. NN ) |
| 58 | fveq2 | |- ( n = x -> ( f ` n ) = ( f ` x ) ) |
|
| 59 | 58 | csbeq1d | |- ( n = x -> [_ ( f ` n ) / k ]_ B = [_ ( f ` x ) / k ]_ B ) |
| 60 | eqid | |- ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
|
| 61 | 59 60 | fvmpti | |- ( x e. NN -> ( ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ` x ) = ( _I ` [_ ( f ` x ) / k ]_ B ) ) |
| 62 | 57 61 | syl | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> ( ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ` x ) = ( _I ` [_ ( f ` x ) / k ]_ B ) ) |
| 63 | 58 | csbeq1d | |- ( n = x -> [_ ( f ` n ) / k ]_ C = [_ ( f ` x ) / k ]_ C ) |
| 64 | eqid | |- ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) = ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) |
|
| 65 | 63 64 | fvmpti | |- ( x e. NN -> ( ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ` x ) = ( _I ` [_ ( f ` x ) / k ]_ C ) ) |
| 66 | 57 65 | syl | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> ( ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ` x ) = ( _I ` [_ ( f ` x ) / k ]_ C ) ) |
| 67 | 55 62 66 | 3eqtr4d | |- ( ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ x e. ( 1 ... m ) ) -> ( ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ` x ) = ( ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ` x ) ) |
| 68 | 36 67 | seqfveq | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) |
| 69 | 68 | eqeq2d | |- ( ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) <-> x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) |
| 70 | 69 | pm5.32da | |- ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 71 | 70 | exbidv | |- ( ( A. k e. A ( _I ` B ) = ( _I ` C ) /\ m e. NN ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 72 | 71 | rexbidva | |- ( A. k e. A ( _I ` B ) = ( _I ` C ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 73 | 33 72 | orbi12d | |- ( A. k e. A ( _I ` B ) = ( _I ` C ) -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
| 74 | 73 | iotabidv | |- ( A. k e. A ( _I ` B ) = ( _I ` C ) -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
| 75 | df-sum | |- sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
|
| 76 | df-sum | |- sum_ k e. A C = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
|
| 77 | 74 75 76 | 3eqtr4g | |- ( A. k e. A ( _I ` B ) = ( _I ` C ) -> sum_ k e. A B = sum_ k e. A C ) |