This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submagma of a submagma is a submagma. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubmgm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| Assertion | subsubmgm | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubmgm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 3 | 2 | submgmss | ⊢ ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 5 | 1 | submgmbas | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 7 | 4 6 | sseqtrrd | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐴 ⊆ 𝑆 ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 9 | 8 | submgmss | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | 7 10 | sstrd | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | 1 | oveq1i | ⊢ ( 𝐻 ↾s 𝐴 ) = ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) |
| 13 | ressabs | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) | |
| 14 | 12 13 | eqtrid | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 15 | 7 14 | syldan | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 16 | eqid | ⊢ ( 𝐻 ↾s 𝐴 ) = ( 𝐻 ↾s 𝐴 ) | |
| 17 | 16 | submgmmgm | ⊢ ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) → ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) |
| 19 | 15 18 | eqeltrrd | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) |
| 20 | submgmrcl | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → 𝐺 ∈ Mgm ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐺 ∈ Mgm ) |
| 22 | eqid | ⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) | |
| 23 | 8 22 | issubmgm2 | ⊢ ( 𝐺 ∈ Mgm → ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) ) ) |
| 24 | 21 23 | syl | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) ) ) |
| 25 | 11 19 24 | mpbir2and | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ) |
| 26 | 25 7 | jca | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) |
| 27 | simprr | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) | |
| 28 | 5 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 29 | 27 28 | sseqtrd | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 30 | 14 | adantrl | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 31 | 22 | submgmmgm | ⊢ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) → ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) |
| 32 | 31 | ad2antrl | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) |
| 33 | 30 32 | eqeltrd | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) |
| 34 | 1 | submgmmgm | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → 𝐻 ∈ Mgm ) |
| 35 | 34 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐻 ∈ Mgm ) |
| 36 | 2 16 | issubmgm2 | ⊢ ( 𝐻 ∈ Mgm → ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) ) ) |
| 37 | 35 36 | syl | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) ) ) |
| 38 | 29 33 37 | mpbir2and | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) |
| 39 | 26 38 | impbida | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |