This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submagma of a submagma is a submagma. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubmgm.h | |- H = ( G |`s S ) |
|
| Assertion | subsubmgm | |- ( S e. ( SubMgm ` G ) -> ( A e. ( SubMgm ` H ) <-> ( A e. ( SubMgm ` G ) /\ A C_ S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubmgm.h | |- H = ( G |`s S ) |
|
| 2 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 3 | 2 | submgmss | |- ( A e. ( SubMgm ` H ) -> A C_ ( Base ` H ) ) |
| 4 | 3 | adantl | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> A C_ ( Base ` H ) ) |
| 5 | 1 | submgmbas | |- ( S e. ( SubMgm ` G ) -> S = ( Base ` H ) ) |
| 6 | 5 | adantr | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> S = ( Base ` H ) ) |
| 7 | 4 6 | sseqtrrd | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> A C_ S ) |
| 8 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 9 | 8 | submgmss | |- ( S e. ( SubMgm ` G ) -> S C_ ( Base ` G ) ) |
| 10 | 9 | adantr | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> S C_ ( Base ` G ) ) |
| 11 | 7 10 | sstrd | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> A C_ ( Base ` G ) ) |
| 12 | 1 | oveq1i | |- ( H |`s A ) = ( ( G |`s S ) |`s A ) |
| 13 | ressabs | |- ( ( S e. ( SubMgm ` G ) /\ A C_ S ) -> ( ( G |`s S ) |`s A ) = ( G |`s A ) ) |
|
| 14 | 12 13 | eqtrid | |- ( ( S e. ( SubMgm ` G ) /\ A C_ S ) -> ( H |`s A ) = ( G |`s A ) ) |
| 15 | 7 14 | syldan | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( H |`s A ) = ( G |`s A ) ) |
| 16 | eqid | |- ( H |`s A ) = ( H |`s A ) |
|
| 17 | 16 | submgmmgm | |- ( A e. ( SubMgm ` H ) -> ( H |`s A ) e. Mgm ) |
| 18 | 17 | adantl | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( H |`s A ) e. Mgm ) |
| 19 | 15 18 | eqeltrrd | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( G |`s A ) e. Mgm ) |
| 20 | submgmrcl | |- ( S e. ( SubMgm ` G ) -> G e. Mgm ) |
|
| 21 | 20 | adantr | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> G e. Mgm ) |
| 22 | eqid | |- ( G |`s A ) = ( G |`s A ) |
|
| 23 | 8 22 | issubmgm2 | |- ( G e. Mgm -> ( A e. ( SubMgm ` G ) <-> ( A C_ ( Base ` G ) /\ ( G |`s A ) e. Mgm ) ) ) |
| 24 | 21 23 | syl | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( A e. ( SubMgm ` G ) <-> ( A C_ ( Base ` G ) /\ ( G |`s A ) e. Mgm ) ) ) |
| 25 | 11 19 24 | mpbir2and | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> A e. ( SubMgm ` G ) ) |
| 26 | 25 7 | jca | |- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( A e. ( SubMgm ` G ) /\ A C_ S ) ) |
| 27 | simprr | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> A C_ S ) |
|
| 28 | 5 | adantr | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> S = ( Base ` H ) ) |
| 29 | 27 28 | sseqtrd | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> A C_ ( Base ` H ) ) |
| 30 | 14 | adantrl | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> ( H |`s A ) = ( G |`s A ) ) |
| 31 | 22 | submgmmgm | |- ( A e. ( SubMgm ` G ) -> ( G |`s A ) e. Mgm ) |
| 32 | 31 | ad2antrl | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> ( G |`s A ) e. Mgm ) |
| 33 | 30 32 | eqeltrd | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> ( H |`s A ) e. Mgm ) |
| 34 | 1 | submgmmgm | |- ( S e. ( SubMgm ` G ) -> H e. Mgm ) |
| 35 | 34 | adantr | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> H e. Mgm ) |
| 36 | 2 16 | issubmgm2 | |- ( H e. Mgm -> ( A e. ( SubMgm ` H ) <-> ( A C_ ( Base ` H ) /\ ( H |`s A ) e. Mgm ) ) ) |
| 37 | 35 36 | syl | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> ( A e. ( SubMgm ` H ) <-> ( A C_ ( Base ` H ) /\ ( H |`s A ) e. Mgm ) ) ) |
| 38 | 29 33 37 | mpbir2and | |- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> A e. ( SubMgm ` H ) ) |
| 39 | 26 38 | impbida | |- ( S e. ( SubMgm ` G ) -> ( A e. ( SubMgm ` H ) <-> ( A e. ( SubMgm ` G ) /\ A C_ S ) ) ) |