This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrngint | |- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRng ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngsubg | |- ( r e. ( SubRng ` R ) -> r e. ( SubGrp ` R ) ) |
|
| 2 | 1 | ssriv | |- ( SubRng ` R ) C_ ( SubGrp ` R ) |
| 3 | sstr | |- ( ( S C_ ( SubRng ` R ) /\ ( SubRng ` R ) C_ ( SubGrp ` R ) ) -> S C_ ( SubGrp ` R ) ) |
|
| 4 | 2 3 | mpan2 | |- ( S C_ ( SubRng ` R ) -> S C_ ( SubGrp ` R ) ) |
| 5 | subgint | |- ( ( S C_ ( SubGrp ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
|
| 6 | 4 5 | sylan | |- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
| 7 | ssel2 | |- ( ( S C_ ( SubRng ` R ) /\ r e. S ) -> r e. ( SubRng ` R ) ) |
|
| 8 | 7 | ad4ant14 | |- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> r e. ( SubRng ` R ) ) |
| 9 | simprl | |- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) |
|
| 10 | elinti | |- ( x e. |^| S -> ( r e. S -> x e. r ) ) |
|
| 11 | 10 | imp | |- ( ( x e. |^| S /\ r e. S ) -> x e. r ) |
| 12 | 9 11 | sylan | |- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> x e. r ) |
| 13 | simprr | |- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) |
|
| 14 | elinti | |- ( y e. |^| S -> ( r e. S -> y e. r ) ) |
|
| 15 | 14 | imp | |- ( ( y e. |^| S /\ r e. S ) -> y e. r ) |
| 16 | 13 15 | sylan | |- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> y e. r ) |
| 17 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 18 | 17 | subrngmcl | |- ( ( r e. ( SubRng ` R ) /\ x e. r /\ y e. r ) -> ( x ( .r ` R ) y ) e. r ) |
| 19 | 8 12 16 18 | syl3anc | |- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> ( x ( .r ` R ) y ) e. r ) |
| 20 | 19 | ralrimiva | |- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. r e. S ( x ( .r ` R ) y ) e. r ) |
| 21 | ovex | |- ( x ( .r ` R ) y ) e. _V |
|
| 22 | 21 | elint2 | |- ( ( x ( .r ` R ) y ) e. |^| S <-> A. r e. S ( x ( .r ` R ) y ) e. r ) |
| 23 | 20 22 | sylibr | |- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( .r ` R ) y ) e. |^| S ) |
| 24 | 23 | ralrimivva | |- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) |
| 25 | ssn0 | |- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> ( SubRng ` R ) =/= (/) ) |
|
| 26 | n0 | |- ( ( SubRng ` R ) =/= (/) <-> E. r r e. ( SubRng ` R ) ) |
|
| 27 | subrngrcl | |- ( r e. ( SubRng ` R ) -> R e. Rng ) |
|
| 28 | 27 | exlimiv | |- ( E. r r e. ( SubRng ` R ) -> R e. Rng ) |
| 29 | 26 28 | sylbi | |- ( ( SubRng ` R ) =/= (/) -> R e. Rng ) |
| 30 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 31 | 30 17 | issubrng2 | |- ( R e. Rng -> ( |^| S e. ( SubRng ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) |
| 32 | 25 29 31 | 3syl | |- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> ( |^| S e. ( SubRng ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) |
| 33 | 6 24 32 | mpbir2and | |- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRng ` R ) ) |