This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a unital ring is a subring of a non-unital ring. (Contributed by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrgsubrng | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubRng ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 3 | 1 2 | issubrg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) ) ) |
| 4 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) ) → 𝑅 ∈ Rng ) |
| 6 | ringrng | ⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring → ( 𝑅 ↾s 𝐴 ) ∈ Rng ) | |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Rng ) |
| 8 | simprl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) | |
| 9 | 1 | issubrng | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) ) |
| 10 | 5 7 8 9 | syl3anbrc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubRng ‘ 𝑅 ) ) |
| 11 | 3 10 | sylbi | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubRng ‘ 𝑅 ) ) |