This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrgsubg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl | ||
| 2 | ringgrp | ||
| 3 | 1 2 | syl | |
| 4 | eqid | ||
| 5 | 4 | subrgss | |
| 6 | eqid | ||
| 7 | 6 | subrgring | |
| 8 | ringgrp | ||
| 9 | 7 8 | syl | |
| 10 | 4 | issubg | |
| 11 | 3 5 9 10 | syl3anbrc |