This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| subrgpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| subrgpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| subrgpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | subrgpropd | ⊢ ( 𝜑 → ( SubRing ‘ 𝐾 ) = ( SubRing ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | subrgpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | subrgpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | subrgpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | 1 2 3 4 | ringpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
| 6 | 1 | ineq2d | ⊢ ( 𝜑 → ( 𝑠 ∩ 𝐵 ) = ( 𝑠 ∩ ( Base ‘ 𝐾 ) ) ) |
| 7 | eqid | ⊢ ( 𝐾 ↾s 𝑠 ) = ( 𝐾 ↾s 𝑠 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 9 | 7 8 | ressbas | ⊢ ( 𝑠 ∈ V → ( 𝑠 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝑠 ) ) ) |
| 10 | 9 | elv | ⊢ ( 𝑠 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝑠 ) ) |
| 11 | 6 10 | eqtrdi | ⊢ ( 𝜑 → ( 𝑠 ∩ 𝐵 ) = ( Base ‘ ( 𝐾 ↾s 𝑠 ) ) ) |
| 12 | 2 | ineq2d | ⊢ ( 𝜑 → ( 𝑠 ∩ 𝐵 ) = ( 𝑠 ∩ ( Base ‘ 𝐿 ) ) ) |
| 13 | eqid | ⊢ ( 𝐿 ↾s 𝑠 ) = ( 𝐿 ↾s 𝑠 ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 15 | 13 14 | ressbas | ⊢ ( 𝑠 ∈ V → ( 𝑠 ∩ ( Base ‘ 𝐿 ) ) = ( Base ‘ ( 𝐿 ↾s 𝑠 ) ) ) |
| 16 | 15 | elv | ⊢ ( 𝑠 ∩ ( Base ‘ 𝐿 ) ) = ( Base ‘ ( 𝐿 ↾s 𝑠 ) ) |
| 17 | 12 16 | eqtrdi | ⊢ ( 𝜑 → ( 𝑠 ∩ 𝐵 ) = ( Base ‘ ( 𝐿 ↾s 𝑠 ) ) ) |
| 18 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝑠 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 19 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝑠 ∩ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 20 | 18 19 | anim12i | ⊢ ( ( 𝑥 ∈ ( 𝑠 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝑠 ∩ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 21 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 22 | 7 21 | ressplusg | ⊢ ( 𝑠 ∈ V → ( +g ‘ 𝐾 ) = ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) ) |
| 23 | 22 | elv | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) |
| 24 | 23 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) |
| 25 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 26 | 13 25 | ressplusg | ⊢ ( 𝑠 ∈ V → ( +g ‘ 𝐿 ) = ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) ) |
| 27 | 26 | elv | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) |
| 28 | 27 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) |
| 29 | 3 24 28 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) ) |
| 30 | 20 29 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑠 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝑠 ∩ 𝐵 ) ) ) → ( 𝑥 ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) ) |
| 31 | eqid | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) | |
| 32 | 7 31 | ressmulr | ⊢ ( 𝑠 ∈ V → ( .r ‘ 𝐾 ) = ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) ) |
| 33 | 32 | elv | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) |
| 34 | 33 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) |
| 35 | eqid | ⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) | |
| 36 | 13 35 | ressmulr | ⊢ ( 𝑠 ∈ V → ( .r ‘ 𝐿 ) = ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) ) |
| 37 | 36 | elv | ⊢ ( .r ‘ 𝐿 ) = ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) |
| 38 | 37 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) |
| 39 | 4 34 38 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) ) |
| 40 | 20 39 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑠 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝑠 ∩ 𝐵 ) ) ) → ( 𝑥 ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) ) |
| 41 | 11 17 30 40 | ringpropd | ⊢ ( 𝜑 → ( ( 𝐾 ↾s 𝑠 ) ∈ Ring ↔ ( 𝐿 ↾s 𝑠 ) ∈ Ring ) ) |
| 42 | 5 41 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( 𝐾 ↾s 𝑠 ) ∈ Ring ) ↔ ( 𝐿 ∈ Ring ∧ ( 𝐿 ↾s 𝑠 ) ∈ Ring ) ) ) |
| 43 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 44 | 43 | sseq2d | ⊢ ( 𝜑 → ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ↔ 𝑠 ⊆ ( Base ‘ 𝐿 ) ) ) |
| 45 | 1 2 4 | rngidpropd | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |
| 46 | 45 | eleq1d | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐾 ) ∈ 𝑠 ↔ ( 1r ‘ 𝐿 ) ∈ 𝑠 ) ) |
| 47 | 44 46 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ ( 1r ‘ 𝐾 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ ( 1r ‘ 𝐿 ) ∈ 𝑠 ) ) ) |
| 48 | 42 47 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝐾 ∈ Ring ∧ ( 𝐾 ↾s 𝑠 ) ∈ Ring ) ∧ ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ ( 1r ‘ 𝐾 ) ∈ 𝑠 ) ) ↔ ( ( 𝐿 ∈ Ring ∧ ( 𝐿 ↾s 𝑠 ) ∈ Ring ) ∧ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ ( 1r ‘ 𝐿 ) ∈ 𝑠 ) ) ) ) |
| 49 | eqid | ⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) | |
| 50 | 8 49 | issubrg | ⊢ ( 𝑠 ∈ ( SubRing ‘ 𝐾 ) ↔ ( ( 𝐾 ∈ Ring ∧ ( 𝐾 ↾s 𝑠 ) ∈ Ring ) ∧ ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ ( 1r ‘ 𝐾 ) ∈ 𝑠 ) ) ) |
| 51 | eqid | ⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) | |
| 52 | 14 51 | issubrg | ⊢ ( 𝑠 ∈ ( SubRing ‘ 𝐿 ) ↔ ( ( 𝐿 ∈ Ring ∧ ( 𝐿 ↾s 𝑠 ) ∈ Ring ) ∧ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ ( 1r ‘ 𝐿 ) ∈ 𝑠 ) ) ) |
| 53 | 48 50 52 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑠 ∈ ( SubRing ‘ 𝐾 ) ↔ 𝑠 ∈ ( SubRing ‘ 𝐿 ) ) ) |
| 54 | 53 | eqrdv | ⊢ ( 𝜑 → ( SubRing ‘ 𝐾 ) = ( SubRing ‘ 𝐿 ) ) |