This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| subrgpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| subrgpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| subrgpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | subrgpropd | |- ( ph -> ( SubRing ` K ) = ( SubRing ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | subrgpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | subrgpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | subrgpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | 1 2 3 4 | ringpropd | |- ( ph -> ( K e. Ring <-> L e. Ring ) ) |
| 6 | 1 | ineq2d | |- ( ph -> ( s i^i B ) = ( s i^i ( Base ` K ) ) ) |
| 7 | eqid | |- ( K |`s s ) = ( K |`s s ) |
|
| 8 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 9 | 7 8 | ressbas | |- ( s e. _V -> ( s i^i ( Base ` K ) ) = ( Base ` ( K |`s s ) ) ) |
| 10 | 9 | elv | |- ( s i^i ( Base ` K ) ) = ( Base ` ( K |`s s ) ) |
| 11 | 6 10 | eqtrdi | |- ( ph -> ( s i^i B ) = ( Base ` ( K |`s s ) ) ) |
| 12 | 2 | ineq2d | |- ( ph -> ( s i^i B ) = ( s i^i ( Base ` L ) ) ) |
| 13 | eqid | |- ( L |`s s ) = ( L |`s s ) |
|
| 14 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 15 | 13 14 | ressbas | |- ( s e. _V -> ( s i^i ( Base ` L ) ) = ( Base ` ( L |`s s ) ) ) |
| 16 | 15 | elv | |- ( s i^i ( Base ` L ) ) = ( Base ` ( L |`s s ) ) |
| 17 | 12 16 | eqtrdi | |- ( ph -> ( s i^i B ) = ( Base ` ( L |`s s ) ) ) |
| 18 | elinel2 | |- ( x e. ( s i^i B ) -> x e. B ) |
|
| 19 | elinel2 | |- ( y e. ( s i^i B ) -> y e. B ) |
|
| 20 | 18 19 | anim12i | |- ( ( x e. ( s i^i B ) /\ y e. ( s i^i B ) ) -> ( x e. B /\ y e. B ) ) |
| 21 | eqid | |- ( +g ` K ) = ( +g ` K ) |
|
| 22 | 7 21 | ressplusg | |- ( s e. _V -> ( +g ` K ) = ( +g ` ( K |`s s ) ) ) |
| 23 | 22 | elv | |- ( +g ` K ) = ( +g ` ( K |`s s ) ) |
| 24 | 23 | oveqi | |- ( x ( +g ` K ) y ) = ( x ( +g ` ( K |`s s ) ) y ) |
| 25 | eqid | |- ( +g ` L ) = ( +g ` L ) |
|
| 26 | 13 25 | ressplusg | |- ( s e. _V -> ( +g ` L ) = ( +g ` ( L |`s s ) ) ) |
| 27 | 26 | elv | |- ( +g ` L ) = ( +g ` ( L |`s s ) ) |
| 28 | 27 | oveqi | |- ( x ( +g ` L ) y ) = ( x ( +g ` ( L |`s s ) ) y ) |
| 29 | 3 24 28 | 3eqtr3g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` ( K |`s s ) ) y ) = ( x ( +g ` ( L |`s s ) ) y ) ) |
| 30 | 20 29 | sylan2 | |- ( ( ph /\ ( x e. ( s i^i B ) /\ y e. ( s i^i B ) ) ) -> ( x ( +g ` ( K |`s s ) ) y ) = ( x ( +g ` ( L |`s s ) ) y ) ) |
| 31 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 32 | 7 31 | ressmulr | |- ( s e. _V -> ( .r ` K ) = ( .r ` ( K |`s s ) ) ) |
| 33 | 32 | elv | |- ( .r ` K ) = ( .r ` ( K |`s s ) ) |
| 34 | 33 | oveqi | |- ( x ( .r ` K ) y ) = ( x ( .r ` ( K |`s s ) ) y ) |
| 35 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 36 | 13 35 | ressmulr | |- ( s e. _V -> ( .r ` L ) = ( .r ` ( L |`s s ) ) ) |
| 37 | 36 | elv | |- ( .r ` L ) = ( .r ` ( L |`s s ) ) |
| 38 | 37 | oveqi | |- ( x ( .r ` L ) y ) = ( x ( .r ` ( L |`s s ) ) y ) |
| 39 | 4 34 38 | 3eqtr3g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` ( K |`s s ) ) y ) = ( x ( .r ` ( L |`s s ) ) y ) ) |
| 40 | 20 39 | sylan2 | |- ( ( ph /\ ( x e. ( s i^i B ) /\ y e. ( s i^i B ) ) ) -> ( x ( .r ` ( K |`s s ) ) y ) = ( x ( .r ` ( L |`s s ) ) y ) ) |
| 41 | 11 17 30 40 | ringpropd | |- ( ph -> ( ( K |`s s ) e. Ring <-> ( L |`s s ) e. Ring ) ) |
| 42 | 5 41 | anbi12d | |- ( ph -> ( ( K e. Ring /\ ( K |`s s ) e. Ring ) <-> ( L e. Ring /\ ( L |`s s ) e. Ring ) ) ) |
| 43 | 1 2 | eqtr3d | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 44 | 43 | sseq2d | |- ( ph -> ( s C_ ( Base ` K ) <-> s C_ ( Base ` L ) ) ) |
| 45 | 1 2 4 | rngidpropd | |- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
| 46 | 45 | eleq1d | |- ( ph -> ( ( 1r ` K ) e. s <-> ( 1r ` L ) e. s ) ) |
| 47 | 44 46 | anbi12d | |- ( ph -> ( ( s C_ ( Base ` K ) /\ ( 1r ` K ) e. s ) <-> ( s C_ ( Base ` L ) /\ ( 1r ` L ) e. s ) ) ) |
| 48 | 42 47 | anbi12d | |- ( ph -> ( ( ( K e. Ring /\ ( K |`s s ) e. Ring ) /\ ( s C_ ( Base ` K ) /\ ( 1r ` K ) e. s ) ) <-> ( ( L e. Ring /\ ( L |`s s ) e. Ring ) /\ ( s C_ ( Base ` L ) /\ ( 1r ` L ) e. s ) ) ) ) |
| 49 | eqid | |- ( 1r ` K ) = ( 1r ` K ) |
|
| 50 | 8 49 | issubrg | |- ( s e. ( SubRing ` K ) <-> ( ( K e. Ring /\ ( K |`s s ) e. Ring ) /\ ( s C_ ( Base ` K ) /\ ( 1r ` K ) e. s ) ) ) |
| 51 | eqid | |- ( 1r ` L ) = ( 1r ` L ) |
|
| 52 | 14 51 | issubrg | |- ( s e. ( SubRing ` L ) <-> ( ( L e. Ring /\ ( L |`s s ) e. Ring ) /\ ( s C_ ( Base ` L ) /\ ( 1r ` L ) e. s ) ) ) |
| 53 | 48 50 52 | 3bitr4g | |- ( ph -> ( s e. ( SubRing ` K ) <-> s e. ( SubRing ` L ) ) ) |
| 54 | 53 | eqrdv | |- ( ph -> ( SubRing ` K ) = ( SubRing ` L ) ) |