This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set A , contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set A . Analogous to pgrpsubgsymg . (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submefmnd.g | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| submefmnd.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| submefmnd.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| submefmnd.c | ⊢ 𝐹 = ( Base ‘ 𝑆 ) | ||
| Assertion | submefmnd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝐹 ∈ ( SubMnd ‘ 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submefmnd.g | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | submefmnd.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 3 | submefmnd.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 4 | submefmnd.c | ⊢ 𝐹 = ( Base ‘ 𝑆 ) | |
| 5 | 1 | efmndmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
| 6 | simpl1 | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝑆 ∈ Mnd ) | |
| 7 | 5 6 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → ( 𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ) |
| 8 | simpl2 | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝐹 ⊆ 𝐵 ) | |
| 9 | simpl3 | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 0 ∈ 𝐹 ) | |
| 10 | simpr | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) | |
| 11 | resmpo | ⊢ ( ( 𝐹 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵 ) → ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) | |
| 12 | 11 | anidms | ⊢ ( 𝐹 ⊆ 𝐵 → ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 14 | 1 2 13 | efmndplusg | ⊢ ( +g ‘ 𝑀 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |
| 15 | 14 | eqcomi | ⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ 𝑀 ) |
| 16 | 15 | reseq1i | ⊢ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( ( +g ‘ 𝑀 ) ↾ ( 𝐹 × 𝐹 ) ) |
| 17 | 12 16 | eqtr3di | ⊢ ( 𝐹 ⊆ 𝐵 → ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( ( +g ‘ 𝑀 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) → ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( ( +g ‘ 𝑀 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( ( +g ‘ 𝑀 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
| 20 | 10 19 | eqtrd | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( +g ‘ 𝑆 ) = ( ( +g ‘ 𝑀 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
| 21 | 8 9 20 | 3jca | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ ( +g ‘ 𝑆 ) = ( ( +g ‘ 𝑀 ) ↾ ( 𝐹 × 𝐹 ) ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → ( 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ ( +g ‘ 𝑆 ) = ( ( +g ‘ 𝑀 ) ↾ ( 𝐹 × 𝐹 ) ) ) ) |
| 23 | 2 4 3 | mndissubm | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ( 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ ( +g ‘ 𝑆 ) = ( ( +g ‘ 𝑀 ) ↾ ( 𝐹 × 𝐹 ) ) ) → 𝐹 ∈ ( SubMnd ‘ 𝑀 ) ) ) |
| 24 | 7 22 23 | sylc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → 𝐹 ∈ ( SubMnd ‘ 𝑀 ) ) |
| 25 | 24 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ) ∧ ( +g ‘ 𝑆 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝐹 ∈ ( SubMnd ‘ 𝑀 ) ) ) |