This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set A , contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set A . Analogous to pgrpsubgsymg . (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submefmnd.g | |- M = ( EndoFMnd ` A ) |
|
| submefmnd.b | |- B = ( Base ` M ) |
||
| submefmnd.0 | |- .0. = ( 0g ` M ) |
||
| submefmnd.c | |- F = ( Base ` S ) |
||
| Assertion | submefmnd | |- ( A e. V -> ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> F e. ( SubMnd ` M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submefmnd.g | |- M = ( EndoFMnd ` A ) |
|
| 2 | submefmnd.b | |- B = ( Base ` M ) |
|
| 3 | submefmnd.0 | |- .0. = ( 0g ` M ) |
|
| 4 | submefmnd.c | |- F = ( Base ` S ) |
|
| 5 | 1 | efmndmnd | |- ( A e. V -> M e. Mnd ) |
| 6 | simpl1 | |- ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> S e. Mnd ) |
|
| 7 | 5 6 | anim12i | |- ( ( A e. V /\ ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) ) -> ( M e. Mnd /\ S e. Mnd ) ) |
| 8 | simpl2 | |- ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> F C_ B ) |
|
| 9 | simpl3 | |- ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> .0. e. F ) |
|
| 10 | simpr | |- ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) |
|
| 11 | resmpo | |- ( ( F C_ B /\ F C_ B ) -> ( ( f e. B , g e. B |-> ( f o. g ) ) |` ( F X. F ) ) = ( f e. F , g e. F |-> ( f o. g ) ) ) |
|
| 12 | 11 | anidms | |- ( F C_ B -> ( ( f e. B , g e. B |-> ( f o. g ) ) |` ( F X. F ) ) = ( f e. F , g e. F |-> ( f o. g ) ) ) |
| 13 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 14 | 1 2 13 | efmndplusg | |- ( +g ` M ) = ( f e. B , g e. B |-> ( f o. g ) ) |
| 15 | 14 | eqcomi | |- ( f e. B , g e. B |-> ( f o. g ) ) = ( +g ` M ) |
| 16 | 15 | reseq1i | |- ( ( f e. B , g e. B |-> ( f o. g ) ) |` ( F X. F ) ) = ( ( +g ` M ) |` ( F X. F ) ) |
| 17 | 12 16 | eqtr3di | |- ( F C_ B -> ( f e. F , g e. F |-> ( f o. g ) ) = ( ( +g ` M ) |` ( F X. F ) ) ) |
| 18 | 17 | 3ad2ant2 | |- ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) -> ( f e. F , g e. F |-> ( f o. g ) ) = ( ( +g ` M ) |` ( F X. F ) ) ) |
| 19 | 18 | adantr | |- ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> ( f e. F , g e. F |-> ( f o. g ) ) = ( ( +g ` M ) |` ( F X. F ) ) ) |
| 20 | 10 19 | eqtrd | |- ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> ( +g ` S ) = ( ( +g ` M ) |` ( F X. F ) ) ) |
| 21 | 8 9 20 | 3jca | |- ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> ( F C_ B /\ .0. e. F /\ ( +g ` S ) = ( ( +g ` M ) |` ( F X. F ) ) ) ) |
| 22 | 21 | adantl | |- ( ( A e. V /\ ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) ) -> ( F C_ B /\ .0. e. F /\ ( +g ` S ) = ( ( +g ` M ) |` ( F X. F ) ) ) ) |
| 23 | 2 4 3 | mndissubm | |- ( ( M e. Mnd /\ S e. Mnd ) -> ( ( F C_ B /\ .0. e. F /\ ( +g ` S ) = ( ( +g ` M ) |` ( F X. F ) ) ) -> F e. ( SubMnd ` M ) ) ) |
| 24 | 7 22 23 | sylc | |- ( ( A e. V /\ ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) ) -> F e. ( SubMnd ` M ) ) |
| 25 | 24 | ex | |- ( A e. V -> ( ( ( S e. Mnd /\ F C_ B /\ .0. e. F ) /\ ( +g ` S ) = ( f e. F , g e. F |-> ( f o. g ) ) ) -> F e. ( SubMnd ` M ) ) ) |