This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019) (Revised by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pgrpsubgsymgbi.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| pgrpsubgsymgbi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| pgrpsubgsymg.c | ⊢ 𝐹 = ( Base ‘ 𝑃 ) | ||
| Assertion | pgrpsubgsymg | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | pgrpsubgsymgbi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | pgrpsubgsymg.c | ⊢ 𝐹 = ( Base ‘ 𝑃 ) | |
| 4 | 1 | symggrp | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 5 | simp1 | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝑃 ∈ Grp ) | |
| 6 | 4 5 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → ( 𝐺 ∈ Grp ∧ 𝑃 ∈ Grp ) ) |
| 7 | simp2 | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝐹 ⊆ 𝐵 ) | |
| 8 | simp3 | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) | |
| 9 | 1 2 | symgbasmap | ⊢ ( 𝑓 ∈ 𝐵 → 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 10 | 9 | ssriv | ⊢ 𝐵 ⊆ ( 𝐴 ↑m 𝐴 ) |
| 11 | sstr | ⊢ ( ( 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ↑m 𝐴 ) ) → 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) ) | |
| 12 | 10 11 | mpan2 | ⊢ ( 𝐹 ⊆ 𝐵 → 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) ) |
| 13 | resmpo | ⊢ ( ( 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) ∧ 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) ) → ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) | |
| 14 | 13 | anidms | ⊢ ( 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) → ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
| 15 | 12 14 | syl | ⊢ ( 𝐹 ⊆ 𝐵 → ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
| 16 | eqid | ⊢ ( 𝐴 ↑m 𝐴 ) = ( 𝐴 ↑m 𝐴 ) | |
| 17 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 18 | 1 16 17 | symgplusg | ⊢ ( +g ‘ 𝐺 ) = ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) |
| 19 | 18 | eqcomi | ⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ 𝐺 ) |
| 20 | 19 | reseq1i | ⊢ ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) |
| 21 | 15 20 | eqtr3di | ⊢ ( 𝐹 ⊆ 𝐵 → ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
| 23 | 8 22 | eqtrd | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( +g ‘ 𝑃 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
| 24 | 7 23 | jca | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → ( 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) ) |
| 26 | 2 3 | grpissubg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ Grp ) → ( ( 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 27 | 6 25 26 | sylc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 28 | 27 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) ) |